DOI QR코드

DOI QR Code

Genetic Prokaryotic Diversity in Boring Slime from the Development of a Groundwater Heat Pump System

지하수 히트펌프 시스템의 지중 환경관리를 위한 시추 슬라임의 원핵생물 유전자 다양성

  • Kim, Heejung (School of Earth and Environmental Sciences, Seoul National University) ;
  • Lee, Siwon (Water Supply & Sewerage Research Division, National Institute of Environmental Research) ;
  • Park, Junghee (School of Earth and Environmental Sciences, Seoul National University) ;
  • Joun, Won-Tak (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kim, Jaeyeon (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kim, Honghyun (School of Earth and Environmental Sciences, Seoul National University) ;
  • Lee, Kang-Kun (School of Earth and Environmental Sciences, Seoul National University)
  • 김희정 (서울대학교 지구환경과학부) ;
  • 이시원 (국립환경과학원 상하수도연구과) ;
  • 박정희 (서울대학교 지구환경과학부) ;
  • 전원탁 (서울대학교 지구환경과학부) ;
  • 김재연 (서울대학교 지구환경과학부) ;
  • 김홍현 (서울대학교 지구환경과학부) ;
  • 이강근 (서울대학교 지구환경과학부)
  • Received : 2016.06.27
  • Accepted : 2016.11.02
  • Published : 2016.12.28

Abstract

Groundwater heat pump (GWHP) systems must consider phenomena such as clogging to improve system efficiency and maintenance. In this study, we evaluated the prokaryotic diversity in a boring slime sample obtained at a depth of 10 m, which represented an undisturbed sample not affected by aquifer drawdown. Bacteria belonging to the phyla Proteobacteria (20.8%), Acidobacteria (18.8%), Chloroflexi (16.9%), and Firmicutes (10.2%) were found. Additionally, 144 species were identified as belonging to the genus Koribacter. Archaeal phyla were detected including Thaumarchaeota (42.8%), Crenarchaeota (36.9%), and Euryarchaeota (17.4%) and the class level comprised the miscellaneous Crenarchaeota group (MCG), Finnish forest soil type B (FFSB), and Thermoplasmata, which collectively accounted for approximately 69.4% of the detected Archaea. Operational taxonomic units (OTUs) were analyzed to reveal 3,565 bacterial and 836 archaeal OTUs, with abundances of 7.81 and 6.68, and richnesses of 5.96E-4 and 2.86E-3, respectively. The distribution of the groundwater microbial community in the study area showed a higher proportion of non-classified or unidentified groups compared to typical communities in surface water and air. In addition, 135 (approx. 1.9%) reads were assigned to a bacterial candidate associated with clogging.

지하수의 열을 이용한 히트펌프 시스템에서는 열 효율 유지를 위한 클로깅 현상이 고려되어야 한다. 클로깅 현상은 토양 지하수 환경에서 이화학적 요인 외에도 미생물학적 요인으로 발생한다. 이번 연구에서는 안정적인 지하수 열원 냉난방 시스템 운영을 위하여, 대수층 수위강하의 영향을 받지 않는 지하 10 미터 지점에서 불교란 시추 슬라임의 초기상태 원핵생물 다양성을 조사하였다. 세균은 문 수준에서 Proteobacteria (20.8%), Acidobacteria (18.8%), Chloroflexi (16.9%) 및 Firmicutes (10.2%) 등으로 나타났고, 속 수준에서는 Koribacter속 등 144개속이 분석되었다. 고세균은 문 수준에서 Thaumarchaeota (42.8%), Crenarchaeota (36.9%) 및 Euryarchaeota (17.4%)이 나타났으며, 강 수준에서 약 69.4% 비율로 Miscellaneous Crenarchaeota Group (MCG), Finnish Forest Soil Type B (FFSB) 및 Thermoplasmata가 분석되었다. Operational taxonomic units (OTUs)는 세균 3,565 및 고세균 836 OTUs로 나타났고, 세균이 고세균에 비해 풍부하며 우점도가 낮게 나타났다. 또한, 관정 막힘 현상을 유발할 가능성 있는 세균 후보군 135개(1.9%) reads가 분석되었으며, 향후 클로깅 현상에 대한 연구에 자료로 활용할 수 있을 것으로 기대된다.

Keywords

References

  1. Ahn YJ. 2001. The study about characters and microfloral biodiversity of groundwater in Youngan county. Doctorate thesis. Hanyang University, Seoul, Korea.
  2. Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P. 2008. Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat. Rev. Microbiol. 6: 245-252. https://doi.org/10.1038/nrmicro1852
  3. Cha GU. 2010. Diversity of archaea and ammonia-oixidizing archaea in soil and sediment of the Cheon-ho reservoir. Dankook University, Cheonan, Korea.
  4. Cho YU, Woo TH, Chung KS, Kim Y. 2013. Study on Energy Consumption of Air-source, Ground-source and Dual-source Heat Pump during Intermediate Season. Trans. Korea soc. geotherm. Energ. Engin. 9: 1-7.
  5. Garcia RK, Gerth M, Stadler IJ, Dogma Jr, Muller R. 2010. Expanded phylogeny of myxobacteria and evidence for cultivation of the 'unculturables'. Mol. Phylogenet. Evol. 57: 878-887. https://doi.org/10.1016/j.ympev.2010.08.028
  6. Han CY, Kang JM, Park HD. 2001. Numerical study on reduction of the permeability of the fractured rocksat percolation threshold due to clogging by in-situ bacteria growth. J. Korean Inst. Mineal Energ. Res. Engin. 38: 273-282.
  7. Hvorslev MJ. 1949. The Time Lag in Observation of Ground-water Levels and Pressures. Waterways Experiment Station, Corps of Engineers, US Army.
  8. Jurgens G, Glöckner F, Amann R, Saano A, Montonen L, Likolammi M, et al. 2000. Identification of novel Archaea in bacterioplankton of a boreal forest lake by phylogenetic analysis and fluorescent in situ hybridization (1). FEMS Microbiol. Ecol. 34: 45-56.
  9. Kim GS. 2011. Study on biofilm formation and bacterial diversity using DGGE and pyrosequencing by pipe types in each water treatment process. Dankook University, Cheonan, Korea.
  10. Kim H, Kaown D, Mayer B, Lee JY, Hyun Y, Lee KK. 2015. Identifying the sources of nitrate contamination of groundwater in an agricultural area (Haean basin, Korea) using isotope and microbial community analyses. Sci. Total Environ. 533: 566-575. https://doi.org/10.1016/j.scitotenv.2015.06.080
  11. Kim H, Lee S, Choi IC. 2016. Characterization of bacteria in monitoring-well, leachate and surrounding groundwater near the animal carcass disposal sites using the gene cloning assay. J. Geol. Soc. Korea 52: 155-161. https://doi.org/10.14770/jgsk.2016.52.2.155
  12. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, et al. 2012. Introducing Eztaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62: 716-721. https://doi.org/10.1099/ijs.0.038075-0
  13. Kim YC, Kim YJ. 2010. A review on the state of the art in the management of aquifer recharge. J. Geol. Soc. Korea 46: 521-533.
  14. Koo SY, Kim JY, Kim J, Go KS, Lee SD, Cho KS, et al. 2007. Characterization of microbial communities in a groundwater contaminated with landfill leachate using a carbon substrate utilization assay. J. Soil Groundw. Environ. 12: 20-26.
  15. Kubo K, Lloyd KG, F Biddle J, Amann R, Teske A, Knittel K. 2012. Archaea of the Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in marine sediments. ISMEJ 6: 1949-1965. https://doi.org/10.1038/ismej.2012.37
  16. Lee DR, Choi JG, Kim JH, Shin DY, Lee S. 2015. Identification and phylogenetic analysis of clturalble-bacteria in groundwater of Yeonpyeongdo. Bulletin of Dongnam Health University 33: 49-57.
  17. Lee JK. The generic diversity analysis of bacterial community in groundwater by denaturing gradient gel electrophoresis (DGGE). Hanyang University, Seoul, Korea.
  18. Lee JU, Chon HT. 2000. Bacterial effects on geochemical behavior of elements : An overview on recent geomicrobiological issues. Econ. Environ. Geol. 33: 353-365.
  19. Lee JY. 2009. Current status of ground source heat pumps in Korea. Renew. Sust. Energ. Rev. 13: 1560-1568. https://doi.org/10.1016/j.rser.2008.10.005
  20. Lee S, Lee J, Ahn T. 2013. Flavobacterium aquaticum sp. nov., a member of the Bacteroidetes isolated from a freshwater reservoir. J. Microbiol. 51: 283-288. https://doi.org/10.1007/s12275-013-2293-8
  21. Lim JM. 2003. Analysis of bacteiral genetic diversity of solar saltern soil by DGGE and DNA sequence analysis. Chungnam National University, Daejeon, Korea.
  22. Nam YJ, Yoon H, Kim H, Kim JG. 2015. Analysis of rhizosphere soil bacterial communities on Seonginbong, Ulleungdo island. J. Life Sci. 25: 323-328. https://doi.org/10.5352/JLS.2015.25.3.323
  23. Park BH, Bae GO, Lee KK. 2015. Importance of thermal dispersivity in designing groundwater heat pump (GWHP) system: Field and numerical study. Renew. Energ. 83: 270-279. https://doi.org/10.1016/j.renene.2015.04.036
  24. Park JH, Kim JY, Hong WH, Ahn CH. 2008. Research on the cooling performance evaluation of groundwater heat pump system for residence house. J. Architec. Institut. Plan. Desig. 24: 273-280.
  25. Parker LV, Clark CH. 2002, Study of five discrete interval-type groundwater sampling devices, US Army Corps of Engineers Technical report ERDC/CRREL TR-02-12, p.50.
  26. Stoodley LH, Costerton JW, Stoodley P. 2004. Bacterial biofilms: from the Natural environment to infectious diseases. Nat. Rev. Microbiol. 2: 95-108. https://doi.org/10.1038/nrmicro821
  27. Unno T, Jang J, Han D, Kim J, Sadowsky MJ, Kim O, et al. 2010. Use of barcode pyrosequencing and shared OTUs to determine source of fecal bacteria in watersheds. Environ. Sci. Technol. 44: 7777-7782. https://doi.org/10.1021/es101500z
  28. Wikipedia, 2016. https://en.wikipedia.org/wiki/Quorum_sensing (May 3, 2016)
  29. Wikipedia, 2016. https://en.wikipedia.org/wiki/Diversity_index#Shannon_index (October 19, 2016)
  30. Wu ZH, Jiang DM, Li P, Li YZ. 2005. Exploring the diversity of myxobacteria in a soil niche by myxobacteria-specific primers and probes. Environ. Microbiol. 7: 1602-1610. https://doi.org/10.1111/j.1462-2920.2005.00852.x
  31. Yoon HS. 2009. Bacterial diversity and community structure of rice fields managed by conventional and no-tillage system. Gyeongsang National University, Jinju, Korea.

Cited by

  1. Composition of Groundwater Bacterial Communities before and after Air Surging in a Groundwater Heat Pump System According to a Pyrosequencing Assay vol.9, pp.11, 2016, https://doi.org/10.3390/w9110891