DOI QR코드

DOI QR Code

Analysis of Bone Mineral Density according to Hemoglobin in University Students

혈색소 농도에 따른 대학생의 골밀도 분석

  • Yoon, Joon (Department of Radiologic Technology, Dongnam Health University) ;
  • Kim, Dai-Joong (Department of Laboratory Medicine, Bundang Jesaeng Hospital) ;
  • Sung, Hyun-Ho (Department of Clinical Laboratory Science, Dongnam Health University) ;
  • Jo, Yoon-Kyung (Department of Clinical Laboratory Science, Dongnam Health University)
  • 윤준 (동남보건대학교 방사선과) ;
  • 김대중 (분당제생병원 진단검사의학과) ;
  • 성현호 (동남보건대학교 임상병리과) ;
  • 조윤경 (동남보건대학교 임상병리과)
  • Received : 2016.10.21
  • Accepted : 2016.11.17
  • Published : 2016.12.31

Abstract

This study was performed to evaluate the effect of hemoglobin (Hb) on bone mineral density (BMD) in university students by performing a quantitative analysis. The subjects included healthy university students aged 20 to 30 years. Although osteoporosis has traditionally been considered as a disease of aging women, it is becoming an increasingly concerning male health problem. Diagnosis of osteoporosis is calculated with a quantitative assessment of BMD. Laboratory blood and urine tests are mainly used with low BMD or fragility fractures to identify any possible causes of bone metabolism disorders. In this study, there was no difference in BMD according to gender. The average red blood cell (RBC), Hb, and Hematocrit (HCT) were significantly higher in males (p<0.01). The correlation between lumbar spine, skeletal muscle mass (SMM), and basal metabolic rate (BMR) was statistically significant (p<0.01). Hb showed a 51.7% statistical influence on BMD by multiple regression analysis. These findings are useful to understand the relationship between BMD and Hb; lower Hb level is associated with lower BMD. The Hb level was the strongest predictor of abnormal BMD. In conclusion, this study showed that a low Hb value was significantly correlated with low bone mass, suggesting that a low Hb value is a risk factor for changes in bone turnover that leads to a decrease bone density.

본 연구는 대학생을 대상으로 혈색소와 골밀도를 평가하고, 혈색소와 골밀도 정량 분석 결과를 보기 위하여 시작되었다. 본 연구는 골밀도에 미치는 혈색소의 영향을 목적으로 하였다. 연구대상자는 20~30세의 건강한 대학생 52명을 직접 실험을 진행하였다. 골다공증은 전통적 노화 여성의 질병으로 간주되었지만, 점차 남성의 건강 문제로 되고 있다. 골다공증의 진단은 골밀도의 정량적 평가로 계산된다. 검사실에서 실시하는 혈액과 소변 검사는 주로 뼈의 신진 대사의 장애의 원인을 파악하기 위해 낮은 BMD 또는 취약성 골절에 사용된다. 본 연구는 성별에 따른 골밀도의 차이는 없었다. 평균 적혈구수, 혈색소 및 적혈구 용적은 남성에게서 상당히 높은 값을 나타내었다(p<0.01). 요추 척추, 골격근양, 기초대사량 사이의 상관 관계는 통계적으로 유의 한 수준에서 정의 관계로 나타났다(p<0.01). 다중회귀분석결과 혈색소는 골밀도에 51.7% 통계적 영향을 나타냈다. 이러한 연구 결과는 골밀도와 혈색소에서 유의한 관계를 이해하는데 유용하며, 혈색소 수준은 골밀도 수준을 예측하는데 강력한 인자이다. 결론적으로, 본 연구에서 낮은 Hb 값이 낮은 뼈 질량을 가진 피험자에서 유의한 결과를 보여, 낮은 Hb 값이 골밀도를 감소시키는 뼈 회전율 변화의 위험 요소로서의 규칙을 가짐을 의미한다고 사료된다.

Keywords

References

  1. Kouda K, Ohara K, Nakamura H, Fujita Y, Iki M. Predicting bone mineral acquisition during puberty: data from a 3-year follow-up study in Hamamatsu, Japan. J Bone Miner Metab. 2016;1-7. doi:10.1007/s00774-016-0740-4.
  2. Boskey AL, Coleman R. Aging and bone. J Dent Res. 2010;89(12):1333-1348. doi: 10.1177/0022034510377791.
  3. Taichman RS. Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem cell niche. Blood. 2005;105(7):2631-2639. https://doi.org/10.1182/blood-2004-06-2480
  4. Kim YR, Lee TY, Park YS, Cheon HK. The effect of lifestyle habits and nutrient intake conditions of female shift workers at general hospitals on bone mineral density values. J Radiol Sci Technol. 2012;35(1):9-15.
  5. Ghobadi M, Hoseini R. Investigating the effects of physical activity levels, dairy products and calcium intakes on risk factors of osteoporosis prevention in female students of Islamic Azad University of Damavand, Iran. Medical-biological Problems of Physical Training and Sports. 2014;11:79-82.
  6. Hardison RC. Evolution of hemoglobin and its genes. Cold Spring Harb Perspect Med. 2012;2: a011627.
  7. Heo TH, Kim YK, Yang SJ, Cho HJ, Kim SJ. Immunogenicity of recombinant human erythropoietin: clinical cases, causes and assays. J Exp Biomed Sci. 2009;15:161-166.
  8. Li Z, Li L. Understanding hematopoietic stem-cell microenvironments. Trends Biochem Sci. 2006;10:589-595.
  9. Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol. 2006;2:93-106.
  10. Yin T, Li L. The stem cell niches in bone. J Clin Invest. 2006;116(5):1195-1201. https://doi.org/10.1172/JCI28568
  11. Lucas TS, Bab IA, Lian JB, Stein GS, Jazrawi L, Majeska RJ, et al. Stimulation of systemic bone formation induced by experimental blood loss. Clin Orthop Relat Res. 1997;340:267-275. https://doi.org/10.1097/00003086-199707000-00034
  12. Park SK. An interpretation on abnormal finding of CBC. Korean J Med. 2010;78(5):531-539.
  13. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17:1726-1733. https://doi.org/10.1007/s00198-006-0172-4
  14. Compston J, Cooper A, Cooper C, Francis R, Kanis JA, Marsh D, et al. Guideline for the diagnosis and management of osteoporosis in postmenopausal women and men from the age of 50 years in the UK. Maturitas. 2013;62:105-108.
  15. Priyana A, Peran pertanda tulang dalam serum pada tata laksana osteoporois. Universa Medicina. 2016;26(3):152-159.
  16. Department of Health and Human Services, Centers for Disease Control and Prevention. Body mass index: considerations for practitioners [cited 2015 September 19]. Available from: www.cdc.gov/obesity/downloads/bmiforpactitioners.pdf.
  17. Morin S, Leslie WD. Manitoba bone density program, high bone mineral density is associated with high body mass index. Osteoporos Int. 2009;20(7):1267-1271. doi: 10.1007/s00198-008-0797-6.
  18. Andreoli A, Bazzocchi A, Celi M, Lauro D, Sorge R, Tarantino U, et al. Relationship between body composition, body mass index and bone mineral density in a large population of normal, osteopenic and osteoporotic women. Radiol Med. 2011;116(7):1115-1123. https://doi.org/10.1007/s11547-011-0689-2
  19. Langsetmo L, Hitchcock CL, Kingwell EJ, Davison KS, Berger C, Forsmo S, et al. Physical activity, body mass index and bone mineral density-associations in a prospective populationbased cohort of women and men: the Canadian Multicentre Osteoporosis Study (CaMos). Bone. 2012;50(1):401-408. doi: 10.1016/j.bone.2011.11.009.
  20. Salamat MR, Salamat AH, Abedi I, Janghorbani M. Relationship between weight, body mass index, and bone mineral density in men referred for dual-energy X-ray absorptiometry scan in Isfahan, Iran. J Osteoporos. 2013;205963:7. doi: 10.1155/2013/205963.
  21. Ishii K, Taguchi A, Nakamoto T, Ohtsuka M, Sutthiprapaporn P, Tsuda M, et al. Diagnostic efficacy of alveolar bone loss of the mandible for identifying postmenopausal women with femoral osteoporosis. Dentomaxillofac Radiol. 2007;36:28-33. https://doi.org/10.1259/dmfr/28366679
  22. Delmonico MJ, Harris TB, Lee JS, Visser M, Nevitt M, Kritchevsky SB, et al. Alternative definitions of sarcopenia, lower extremity performance, and functional impairment with aging in older men and women. J Am Geriatr Soc, 2007;55:769-774. https://doi.org/10.1111/j.1532-5415.2007.01140.x
  23. Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV, et al. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci. 2006;61:1059-1064. https://doi.org/10.1093/gerona/61.10.1059
  24. Lin X, Yu H, Zhao C, Qian Y, Hong D, Huang K, et al. The peripheral blood mononuclear cell count is associated with bone health in elderly men: A cross-sectional population-based study. Medicine. 2016;95(15):e3357. doi: 10.1097/MD.0000000000003357.
  25. Lim HS, Park YH, Kim SK. Relationship between serum inflammatory marker and bone mineral density in healthy adults. J Bone Metab. 2016;23(1):27-33. https://doi.org/10.11005/jbm.2016.23.1.27
  26. Matkovic V. Calcium intake and peak bone mass. N Engl J Med. 1992;327:119-120. https://doi.org/10.1056/NEJM199207093270210
  27. Shin S, Lee K, Song C. Relationship of body composition, knee extensor strength, and standing balance to lumbar bone mineral density in postmenopausal females. J Phys Ther Sci. 2016;28(7): 2105-2109. https://doi.org/10.1589/jpts.28.2105
  28. Gurevitch O, Slavin S. The hematological etiology of osteoporosis. Med Hypotheses. 2006;67(4): 729-735. https://doi.org/10.1016/j.mehy.2006.03.051
  29. Hiram-Bab S, Neumann D, Gabet Y. Erythropoietin in bone-Controversies and consensus. Cytokine. 2016;S1043-4666(16)30008-4. doi: 10.1016/j.cyto.2016.01.008
  30. Panjeta M, Tahirovic I, Karamehic J, Sofic E, Ridic O, Coric, J. The relation of erythropoietin towards hemoglobin and hematocrit in varying degrees of renal insufficiency. Materia socio-medica, 2015;27(3):144-148. https://doi.org/10.5455/msm.2015.27.144-148
  31. Li C, Shi C, Kim J, Chen Y, Ni S, Jiang L, et al. Erythropoietin promotes bone formation through EphrinB2/EphB4 signaling. Journal of dental research, 2015;94(3):455-463. https://doi.org/10.1177/0022034514566431
  32. Brinker MR, Thomas KA, Meyers SJ, Texada T, Humbert JR, Cook SD, et al. Bone mineral density of the lumbar spine and proximal femur is decreased in children with sickle cell anemia. Am J Orthop (Belle Mead NJ). 1998;27(1):43-49.
  33. Sarrai M, Duroseau H, D'Augustine J, Moktan S, Bellevue R. Bone mass density in adults with sickle cell disease. Br J Haematol. 2007;136(4): 666-672. https://doi.org/10.1111/j.1365-2141.2006.06487.x

Cited by

  1. Anthropometric, biochemical, and nutritional risk factors for osteoporosis in Korean adults based on a large cross-sectional study vol.16, pp.12, 2016, https://doi.org/10.1371/journal.pone.0261361