DOI QR코드

DOI QR Code

Outdoor Applications of Hyperspectral Imaging Technology for Monitoring Agricultural Crops: A Review

  • Ahmed, Mohammad Raju (Department of Biosystems Machinery Engineering, College of Agricultural and Life Science, Chungnam National University) ;
  • Yasmin, Jannat (Department of Biosystems Machinery Engineering, College of Agricultural and Life Science, Chungnam National University) ;
  • Mo, Changyeun (National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Hoonsoo (Environmental Microbiology and Food Safety Laboratory, BARC-East, Agricultural Research Service, US Department of Agriculture) ;
  • Kim, Moon S. (Environmental Microbiology and Food Safety Laboratory, BARC-East, Agricultural Research Service, US Department of Agriculture) ;
  • Hong, Soon-Jung (Rural Human Resource Development Center) ;
  • Cho, Byoung-Kwan (Department of Biosystems Machinery Engineering, College of Agricultural and Life Science, Chungnam National University)
  • Received : 2016.08.09
  • Accepted : 2016.11.10
  • Published : 2016.12.01

Abstract

Background: Although hyperspectral imaging was originally introduced for military, remote sensing, and astrophysics applications, the use of analytical hyperspectral imaging techniques has been expanded to include monitoring of agricultural crops and commodities due to the broad range and highly specific and sensitive spectral information that can be acquired. Combining hyperspectral imaging with remote sensing expands the range of targets that can be analyzed. Results: Hyperspectral imaging technology can rapidly provide data suitable for monitoring a wide range of plant conditions such as plant stress, nitrogen status, infections, maturity index, and weed discrimination very rapidly, and its use in remote sensing allows for fast spatial coverage. Conclusions: This paper reviews current research on and potential applications of hyperspectral imaging and remote sensing for outdoor field monitoring of agricultural crops. The instrumentation and the fundamental concepts and approaches of hyperspectral imaging and remote sensing for agriculture are presented, along with more recent developments in agricultural monitoring applications. Also discussed are the challenges and limitations of outdoor applications of hyperspectral imaging technology such as illumination conditions and variations due to leaf and plant orientation.

Keywords

References

  1. Ahmadi, S. B .B., Y. A. Nanehkaran and S. Layazali. 2013. Review on hyper-spectral imaging system. International Journal of Scientific & Engineering Research 4(5):253-258.
  2. Alexandratos, N. and J. Bruinsma. 2012. World agriculture towards 2030/2050: The 2012 revision. ESA Work. Pap 3.
  3. Apan, A., A. Held, S. Phinn and J. Markley. 2004. Detecting sugarcane 'orange rust' disease using EO-1 Hyperion hyperspectral imagery. International Journal of Remote Sensing 25(2):489-498. https://doi.org/10.1080/01431160310001618031
  4. Ariana, D. P. and R. F. Lu. 2010. Evaluation of internal defect and surface color of whole pickles using hyperspectral imaging. Journal of Food Engineering 96(4): 583-590. https://doi.org/10.1016/j.jfoodeng.2009.09.005
  5. Bajwa, S. G., P. Bajcsy, P. Groves and L. F. Tian. 2004. Hyperspectral image data mining for band selection in agricultural applications. Transactions of the ASAE 47(3):895-907. https://doi.org/10.13031/2013.16087
  6. Barnes E. M., T. R. Clarke and S. E Richards. 2000. Coincident detection of crop water stress, nitrogen status and canopy density using ground based Multispectral data. In: Proceedings of the 5fh International Conference on Precision Agriculture, Madison, WI: ASA-CSSA-SSSA.
  7. Bauriegel, E., A. Giebel and W. B. Herppich. 2010. Rapid Fusarium head blight detection on winter wheat ears using chlorophyll fluorescence imaging. Journal of Applied Botany and Food Quality 83(2):196-203.
  8. Bauriegel, E., A. Giebel, M. Geyer, U. Schmidt and W. B. Herppich. 2011. Early detection of Fusarium infection in wheat using hyper-spectral imaging. Computers and Electronics in Agriculture 75(2):304-312. https://doi.org/10.1016/j.compag.2010.12.006
  9. Blackburn, G. A. 1998. Quantifying chlorophylls and caroteniods at leaf and canopy scales: an evaluation of some hyperspectral approaches. Remote Sensing of Environment 66(3):273-285. https://doi.org/10.1016/S0034-4257(98)00059-5
  10. Brown, R. B. and S. D. Nobleb. 2005. Site-specific weed management: sensing requirements-what do we need to see?. Weed Science 53(2):252-258. https://doi.org/10.1614/WS-04-068R1
  11. Campbell, J. B. 1996. Introduction to Remote Sensing. 2nd ed. Taylor and Francis, London.
  12. Carley, S. D. 2006. Potential Use of Hyperspectral and Multispectral Remote Sensing Imagery to Enhance Management of Peanut (Arachis hypogaea L.). Unpublished Ph.D. diss. Raleigh, North Carolina: North Carolina State University, Department of Crop Science and Plant Pathology.
  13. Casanova, D., G. F. Epema and J. Goudriaan. 1998. Monitoring rice reflectance at field level for estimating biomass and LAI. Field Crops Res 55(1-2): 83-92. https://doi.org/10.1016/S0378-4290(97)00064-6
  14. Casini, A., F. Lotti, M. Picollo, L. Stefani and E. Buzzegoli. 1999. Image spectroscopy mapping technique for non-invasive analysis of paintings. Studies in Conservation 44(1):39-48. https://doi.org/10.1179/sic.1999.44.1.39
  15. Champagne, C. M., K. Staenz, A. Bannari, H. Mcnairn and J. C. Deguise. 2003. Validation of a hyperspectral curve-fitting model for the estimation of plant water content of agricultural canopies. Remote Sensing of Environment 87(2-3): 148-160. https://doi.org/10.1016/S0034-4257(03)00137-8
  16. Cheng, X., Y. R. Chen, Y. Tao, C. Y. Wang, M. S. Kim and A.M. Lefcourt. 2004. A novel integrated PCA and FLD method on hyperspectral image feature extraction for cucumber chllling damage inspection. Transactions of the ASAE 47(4):1313-1320. https://doi.org/10.13031/2013.16565
  17. Curran, P. J., J. L. Dungan and D. L. Peterson. 2001. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry: testing the kokaly and clark methodologies. Remote Sensing of Environment. Environ 76(3):349-359. https://doi.org/10.1016/S0034-4257(01)00182-1
  18. D'Souza, A. I., L. C. Dawson, D. Berger, S. Clark, P. S. Wijewarnasuriya, J. Bajaj, J. A. Arias, W. E. Tennant, L. Kozlowski and K. Vural. 1999. HgCdTe detectors and FPAs for remote sensing applications. In: Infrared Technology and Applications XXV, Proceedings of SPIE-3698, ed. B.F. Andresen and M. Strojnik Scholl 538-544, Orlando, FL.
  19. Demetriades-shah, T. H., M. D. Steven and J. A. Clark. 1990. High resolution derivative spectra in remote sensing. Remote Sensing of Environment 33(1):55-64. https://doi.org/10.1016/0034-4257(90)90055-Q
  20. Diker, K. and W. C. Bausch. 2003. Potential use of nitrogen reflectance index to estimate plant parameters and yield of maize. Biosystems Engineering. 85(4):437-447. https://doi.org/10.1016/S1537-5110(03)00097-7
  21. ElMasry, G., and D.W. Sun. 2010. Hyperspectral Imaging for Food Quality Analysis and Control. 1st ed. London, UK: Elsevier Inc.
  22. ElMasry, G., N. Wang, A. ElSayed and M. Ngadi. 2007. Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry. Journal of Food Engineering 81(1):98-107. https://doi.org/10.1016/j.jfoodeng.2006.10.016
  23. ElMasrya, G., D. W. Sun and P. Allenb. 2012. Near-infrared hyperspectral imaging for predicting colour, pH and tenderness of fresh beef. Journal of Food Engineering 110(1):127-140. https://doi.org/10.1016/j.jfoodeng.2011.11.028
  24. eXtension. 2016. Available at:http://articles.extension.org/pages/40073/what-is-the-difference-between-multispectral-and-hyperspectral-imagery
  25. Farley, V., A. Vallieres, A. Villemaire, M. Chamberland, P. Lagueux and J. Giroux. 2007. Chemical agent detection and identification with a hyperspectral imaging infrared sensor. In: Electro-Optical Remote Sensing, Detection, and Photonic Technologies and Their Applications, Proceedings of SPIE-6739, Florence, Italy.
  26. Feng, W., X. Yao, Y. Zhu Y. C. Tian and W. X. Cao. 2008. Monitoring leaf nitrogen status with hyperspectral reflectance in wheat. European Journal of Agronomy 28(3):394-404. https://doi.org/10.1016/j.eja.2007.11.005
  27. Fischer, C. and I. Kakoulli. 2006. Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications. Studies in Conservation 51(1):3-16. https://doi.org/10.1179/sic.2006.51.Supplement-1.3
  28. Franz, E., M. R. Gebhardt and K. B. Unklesbay. 1991. The use of local spectral properties of leaves as an aid for identifying weed seedlings in digital images. Transactions of the ASAE. 34(2):0682-0687. https://doi.org/10.13031/2013.31717
  29. Gat, N. 2000. Imaging spectroscopy using tunable filters:a review. In: Wavelet Applications VII, Proceedings of SPIE-4056, ed. H. H. Szu, M. Vetterli, W. J. Campbell and J. R. Buss 50-64, Orlando, FL.
  30. GIS Geography. 2016. Available at: http://gisgeography.com/multispectral-vs-hyperspectral-imagery-explai ned/
  31. Gitelson, A. A., Y. J. Kaufman, R. Stark and D. Rundquist. 2002. Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment 80(1):76-87. https://doi.org/10.1016/S0034-4257(01)00289-9
  32. Goetz, A. F. H., Vane, G., Solomon, J. E. and B. N. Rock. 1985. Imaging spectrometry for Earth remote sensing. Science 228:1147-1153. https://doi.org/10.1126/science.228.4704.1147
  33. Gowen, A. A., C. P. O'Donnell, M. Taghizadeh, P. J. Cullen, J. M. Frias and G. Downey. 2008. Hyperspectral imaging combined with principal component analysis for bruise damage detection on white mushrooms (Agaricus bisporus). Journal of Chemometrics 22(3-4):259-267. https://doi.org/10.1002/cem.1127
  34. Haboudane D, J. R. Miller, N. Tremblay, P. J. Zarco-Tejada, and L. Dextraze. 2002. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application in precision agriculture. Remote Sensing of Environment 81(2-3):416-426. https://doi.org/10.1016/S0034-4257(02)00018-4
  35. Hadoux, X., N. Gorretta and G. Rabatel. 2012. Weeds-wheat discrimination using hyperspectral imagery. In: CIGRAgeng 2012, International Conference on Agricultural Engineering. Valencia, Spain.
  36. Hadoux, X., N. Gorretta, J. M. Roger, R. Bendoula and G. Rabatel. 2014. Comparison of the efficacy of spectral pre-treatments for wheat and weed discrimination in outdoor conditions. Computers and Electronics in Agriculture 108:242-249. https://doi.org/10.1016/j.compag.2014.08.010
  37. Hansen, P. M. and J. K. Schjoerring. 2003. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment 86(4):542-553. https://doi.org/10.1016/S0034-4257(03)00131-7
  38. Hatfield, P. L. and P. J. Pinter Jr. 1993. Remote sensing for crop protection. Crop Protection 12(6):403-414. https://doi.org/10.1016/0261-2194(93)90001-Y
  39. Hinzman, L. D., M. E. Bauer and C. S. T. Daughtry. 1986. Effects of nitrogen fertilization on growth and reflectance characteristics of winter wheat. Remote Sens. Environ 19(1):47-61. https://doi.org/10.1016/0034-4257(86)90040-4
  40. Hadoux, X., N. Gorretta, J. M. Roger, R. Bendoula and G. Rabatel. 2014. Comparison of the efficacy of spectral pre-treatments for wheat and weed discrimination in outdoor conditions. Computers and Electronics in Agriculture 108:242-249. https://doi.org/10.1016/j.compag.2014.08.010
  41. Hunt, J., E. Ramond and B. N. Rock. 1989. Detection in changes in leaf water content using near and mid-infrared reflectance. Remote Sensing of Environment 30(1):45-54.
  42. Jay, S. C., R. L. Lawrence, K. S. Repasky and L. J. Rew. 2010. Detection of leafy spurge using hyper-spectral-spatialtemporal imagery. Geoscience and Remote Sensing Symposium (IGARSS) 4374-4376, Honolulu, IEEE International.
  43. John, J., L. Zimmermann, P. Merken, S. D. Groote, G. Borghs, C. V. Hoof, S. Nemeth and T. Colin. 2003. Extended wavelength InGaAs on GaAs hybrid image sensors. In: Infrared Spaceborne Remote Sensing XI, Proceedings of SPIE-5152, ed. M. Strojnik 263-270, San Diego, California, USA.
  44. Kacira, M., P. P. Ling and T. H. Short. 2002. Machine vision extracted plant movement for early detection of plant water stress. Transactions of the ASAB 45(4):1147-1153.
  45. Kandpal, L. M., S. Lee, M. S. Kim, H. Bae and B. K. Cho. 2015. Short wave infrared (SWIR) hyperspectral imaging technique for examination of aflatoxin B1 (AFB1) on corn kernels. Food Control 51:171-176. https://doi.org/10.1016/j.foodcont.2014.11.020
  46. Kang, Z. and H. Buchenauer. 2000. Cytology and ultrastructure of the infection of wheat spikes by Fusarium culmorum. Mycological Research 104(09): 1083-1093. https://doi.org/10.1017/S0953756200002495
  47. Kim, M. S., A. M. Lefcourt, K. Chao, Y. R. Chen, I. Kim and D. E. Cha. 2002. Multispectral detection of fecal contamination on apples based on hyperspectral imagery: part 1. Application of visible and near-infrared reflectance imaging. Transactions of the ASAE 45(6):2027-2037.
  48. Kim, Y., D. M. Glenn, J. Park, H. K. Ngugi and B. L. Lehman. 2011. Hyperspectral image analysis for water stress detection of apple trees. Computers and Electronics in Agriculture 77:155-160. https://doi.org/10.1016/j.compag.2011.04.008
  49. Kurata, K. and J. Yan. 1996. Water stress estimation of tomato canopy based on machine vision. Acta Horticulturae (ISHS) 440:389-394.
  50. Lacar, F. M., M. M. Lewis and I. T. Grierson. 2001. Use of Hyperspectral Reflectance for Discrimination between Grape Varieties. In: Transactions International Geoscience and Remote Sensing Symposium 2878-2880, Sydney, IEEE.
  51. Lamba, D. W. and R. B. Brownb. 2001. PA-Precision Agriculture:Remote-Sensing and Mapping of Weeds in Crops. Journal of Agricultural Engineering Research 78(2):117-125 https://doi.org/10.1006/jaer.2000.0630
  52. Lawlor, D. W. 2001. Photosynthesis. 3rd ed. BIOS Scientific, Oxford, U. K.
  53. Lee, T., K. R. Reddy and G. F. Sassenrath-Cole. 2000. Reflectance indices with precision and accuracy in predicting cotton leaf nitrogen concentration. Crop Science. 40(6):1814-1819. https://doi.org/10.2135/cropsci2000.4061814x
  54. Leea, W. S., V. Alchanatisb, C. Yangc, M. Hirafujid, D. Moshoue and C. Lif. 2010. Sensing technologies for precision specialty crop production. Computers and Electronics in Agriculture 74(1): 2-33. https://doi.org/10.1016/j.compag.2010.08.005
  55. Lu, R. 2004. Multispectral imaging for predicting firmness and soluble solids content of apple fruit. Postharvest Biology and Technology 31(2):147-157. https://doi.org/10.1016/j.postharvbio.2003.08.006
  56. Lu, R. and Y. Peng. 2006. Hyperspectral scattering for assessing peach fruit firmness. Biosystems Engineering 93(2):161-171. https://doi.org/10.1016/j.biosystemseng.2005.11.004
  57. Lu, R. and Y. Peng. 2007. Development of a multispectral imaging prototype for real-time detection of apple fruit firmness. Optical Engineering 46(12):123201. https://doi.org/10.1117/1.2818812
  58. Lu, R. and Y. R. Chen. 1999. Hyperspectral imaging for safety inspection of food and agricultural products. In: Pathogen Detection and Remediation for Safe Eating, Proceedings of SPIE-3544, ed. Y.R. Chen 121, Boston. MA.
  59. Mahajan, G. R., R. N. Sahoo, R. N Pandey, V. K. Gupta and D. Kumar. 2014. Using hyperspectral remote sensing techniques to monitor nitrogen, phosphorus, sulphur and potassium in wheat (Triticum aestivum L.). Precision Agriculture 15(2):227-240. https://doi.org/10.1007/s11119-013-9339-0
  60. Martinsena, P. and P. Schaareb. 1998. Measuring soluble solids distribution in kiwifruit using near-infrared imaging spectroscopy. Postharvest Biology and Technology 14(3):271-281. https://doi.org/10.1016/S0925-5214(98)00051-9
  61. McMurtrey III, J. E., E. W. Chappelle, M. S. Kim, J. J. Meisinger and L. A. Corp. 1994. Distinguishing nitrogen fertilization levels in field corn (Zea mays L.) with active induced fluoresing and passive reflectance measurements. Remote Sensing of Environment 47(1):36-44. https://doi.org/10.1016/0034-4257(94)90125-2
  62. Moran, M. S., Y. Inoue and E. M. Barnes. 1997. Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sensing of Environment 61(3):319346. https://doi.org/10.1016/S0034-4257(97)00045-X
  63. Moshou, D., C. Bravo, R. Oberti, J. S. West, H. Ramon, S. Vougioukas and D. Bochti. 2011. Intelligent multi-sensor system for the detection and treatment of fungal diseases in arable crops. Biosystems Engineering 108:311-321. https://doi.org/10.1016/j.biosystemseng.2011.01.003
  64. Moshou, D., C. Bravo, R. Oberti, J. S. West, H. Ramon, S. Vougioukas and D. Bochtis. 2011. Intelligent multi-sensor system for the detection and treatment of fungal diseases in arable crops. Biosystems Engineering 108(4):311-321. https://doi.org/10.1016/j.biosystemseng.2011.01.003
  65. Muir, A. Y., R. L Porteous and R. L Wastie. 1982. Experiments in the detection of incipient diseases in potato tubers by optical methods. J. Agric. Eng. Res 27:131-138. https://doi.org/10.1016/0021-8634(82)90099-3
  66. Nagata, M., J. G. Tallada, T. Kobayashi, Y. Cui and Y. Gejima. 2004. Predicting maturity quality parameters of strawberries using hyperspectral imaging. In: ASAE/CSAE Annual International Meeting, Ottawa, Ontario, Canada, Paper No. 043033.
  67. Nansen, C., G. Zhao, N. Dakin, C Zhao and S. R. Turner. 2015. Using hyperspectral imaging to determine germination of native Australian plant seeds J. Photochem. and Photobio. B:Biology 145:19-24 https://doi.org/10.1016/j.jphotobiol.2015.02.015
  68. Naor, A. 2008. Water stress assessment for irrigation scheduling of deciduous trees. Acta Horticulturae (ISHS) 792:467-481.
  69. Nicolai, B. M., K. Beullens, E. Bobelyn, M. L. Hertog, A. Schenk, S. Vermeir and J. Lammertyn. 2006. Systems to characterize internal quality of fruit and vegetables. Acta Horticulturae(ISHS) 712: 59-66.
  70. Noh, H. K., Y. Peng and R. Lu. 2007. Integration of hyperspectral reflectance and fluorescence imaging for assessing apple maturity. Transactions of the ASAE 50(3):963-971. https://doi.org/10.13031/2013.23119
  71. Park, B., K. C. Lawrence, W. R. Windham and D. P. Smith. 2004. Multispectral imaging system for fecal and ingesta detection on poultry carcasses. Journal of Food Process Engineering 27(5):311-327. https://doi.org/10.1111/j.1745-4530.2004.00464.x
  72. Piron, A., V. Leemans, O. Kleynen, F. Lebeau and M. F. Destain. 2008. Selection of the most efficient wavelength bands for discriminating weeds from crop. Computers and Electronics in Agriculture 62(2):141-148. https://doi.org/10.1016/j.compag.2007.12.007
  73. Plaza, J., A. J. Plaza and C. Barra. 2009. Multi-Channel Morphological Profiles for Classification of Hyperspectral Images Using Support Vector Machines. Sensors 9(1):196-218. https://doi.org/10.3390/s90100196
  74. Pozdnyakova, L., P. V. Oudemans, M. G. Hughes and D. Gimenez. 2002. Estimation of spatial and spectral properties of phytophthora root rot and its effects on cranberry yield. Computers and Electronics in Agriculture 37(1-3):57-70. https://doi.org/10.1016/S0168-1699(02)00119-9
  75. Prabhakar, M., Y. G. Prasad, M. Thirupathi, G. Sreedevi, B. Dharajothi and B. Venkateswarlu. 2011. Use of ground based hyperspectral remote sensing for detection of stress in cotton caused by leafhopper (Hemiptera:Cicadellidae). Computers and Electronics in Agriculture 79(2):189-198. https://doi.org/10.1016/j.compag.2011.09.012
  76. Pradhan, S., K. K. Bandyopadhyay, R. N. Sahoo, V. K. Sehgal, R. Singh, V. K. Gupta and D. K. Joshi. 2014. Predicting wheat grain and biomass yield using canopy reflectance of booting stage. J. Indian Soc. Remote Sensing 42(4):711-718. https://doi.org/10.1007/s12524-014-0372-x
  77. Prasannakumar, N. R., S. Chander and R. N. Sahoo. 2014. Characterization of brown plant hopper damage on rice crops through hyperspectral remote sensing under field conditions. Phytoparasitica 42(3):387-395. https://doi.org/10.1007/s12600-013-0375-0
  78. Rajkumar, P., N. Wang, G. EImasry, G. S. V. Raghavan and Y. Gariepy. 2012. Studies on banana fruit quality and maturity stages using hyperspectral imaging. Journal of Food Engineering 108(1):194-200. https://doi.org/10.1016/j.jfoodeng.2011.05.002
  79. Ranjan, R., U. K. Chopra, R. N. Sahoo, A. K Singh and S. Pradhan. 2012. Assessment of plant nitrogen stress through hyperspectral indices. Int. J. Remote Sensing 22(20):6342-6360.
  80. Rencz, A. N. and , R. A. Ryerson. 1999. Remote sensing for the earth sciences: manual of remote sensing Volume 3. New York: Wiley & Sons.
  81. Rodriguez D, G. L. Fitzgerald, R. Belford and L. Christensen. 2005. Detection of nitrogen deficiency in wheat from spectral reflectance indices and basic crop eco-bio physiological concepts. Australian Journal of Agricultural Research 57(7):781-789. https://doi.org/10.1071/AR05361
  82. Rogalski, A. 2004. Optical detectors for focal plane arrays. Opto-Electronics Review 12(2):221-245.
  83. Rondeaux, G., M. Steven, and F. Baret. 1996. Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment 55(2):95-107. https://doi.org/10.1016/0034-4257(95)00186-7
  84. Sahba, K., S. Askraba, and K. E. Alameh. 2006. Non-contact laser spectroscopy for plant discrimination in terrestrial crop spraying. Optics Express 14(25):12485-12493. https://doi.org/10.1364/OE.14.012485
  85. Sanches, I. D., C. R. S. Filho, L. A. Magalhaes, G. C. M. Quiterio, M. N. Alves and W. J. Oliveira. 2013. Assessing the impact of hydrocarbon leakages on vegetation using reflectance spectroscopy. ISPRS J. Photogramm. Remote Sens. 78:85-101. https://doi.org/10.1016/j.isprsjprs.2013.01.007
  86. Sankaran, S., A. Mishra, R. Ehsani and C. Davis. 2010. A review of advanced techniques for detecting plant diseases. Computers and Electronics in Agriculture 72(1): 1-13. https://doi.org/10.1016/j.compag.2010.02.007
  87. Senthilnath, J., A. Dokania, M. Kandukuri, K. N. Ramesh, G. Anand and S. N. Omkar. 2016. Detection of tomatoes using spectral-spatial methods in remotely sensed RGB images captured by UAV. Biosystems Engineering 146:16-32. https://doi.org/10.1016/j.biosystemseng.2015.12.003
  88. Sepulcre-Canto, G., P. J. Zarco-Tejada, J. C. Jimenez-Munoz, J. A. Sobrino, E. de Miguel and F.J. Villalobos. 2006. Detection of water stress in an olive orchard with thermal remote sensing imagery. Agricultural and Forest Meteorology 136(1-2):31-44. https://doi.org/10.1016/j.agrformet.2006.01.008
  89. Sizov, F. F. 2000. Infrared detectors: outlook and means. Semiconductors Physics, Quantum Electronics & Optoelectronics 3(1):52-58.
  90. Slaughter, D. C., D. K. Giles and D. Downey. 2008. Autonomous robotic weed control systems: a review. Computers and Electronics in Agriculture 61(1):63-78. https://doi.org/10.1016/j.compag.2007.05.008
  91. T. Borregaard, H. Nielsen, L. Norgaard and H. Have. 2000. Crop-weed discrimination by line imaging spectroscopy. J. Agric. Eng. Res 75(4):389-400. https://doi.org/10.1006/jaer.1999.0519
  92. Taghizadeh, M., A. Gowen, P. Ward and C. P. O'Donnell. 2010. Use of hyperspectral imaging for evaluation of the shelf-life of fresh white button mushrooms (Agaricus bisporus) stored in different packaging films. Innovative Food Science & Emerging Technologies 11(3):423-431. https://doi.org/10.1016/j.ifset.2010.01.016
  93. Takebe, M., T. Yoneyama, K. Inada and T. Murakami. 1990. Spectral reflectance ratio of rice canopy for estimating crop nitrogen status. Plant. Soil 122(2):295-297. https://doi.org/10.1007/BF02851988
  94. Thenkabail, P. S., R. B. Smith and E. D. Pauw. 2000. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment 71(2):158-182. https://doi.org/10.1016/S0034-4257(99)00067-X
  95. Thenkabail, P. S., R. B. Smith and E. De Pauw. 2000. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment 71(2):158-182. https://doi.org/10.1016/S0034-4257(99)00067-X
  96. Thorp, K. R. and L. F. Tian. 2004. A review on remote sensing of weeds in agriculture. Precision Agriculture 5(5): 477-508. https://doi.org/10.1007/s11119-004-5321-1
  97. Tilling, A. K., G. O'Leary, J. G Ferwerda, S. D Jones, G. Fitzgerald and R. Belford. 2006. Remote Sensing to Detect Nitrogen and Water Stress in Wheat. In: Australian Agronomy Conference, 13th AAC, Perth, Western Australia.
  98. Tran, C.D. 2003. Infrared multispectral imaging: principles and instrumentation. Applied Spectroscopy Reviews 38(2):133-153. https://doi.org/10.1081/ASR-120021165
  99. Ustin, S. L., D. A. Roberts, J. A. Gamon, G. P. Asner and R. O. Green. 2004. Using Imaging Spectroscopy to Study Ecosystem Processes and Properties. BioScience 54(6):523-534. https://doi.org/10.1641/0006-3568(2004)054[0523:UISTSE]2.0.CO;2
  100. Vigneau, N., M. Ecarnotb, G. Rabatela and P. Roumet. 2011. Potential of field hyperspectral imaging as a nondestructive method to assess leaf nitrogen content in Wheat. Field Crops Research 122(1):25-31. https://doi.org/10.1016/j.fcr.2011.02.003
  101. Wang J., K. Nakano, S. Ohashi, Y. Kubota, K. Takizawa and Y. Sasaki. 2011. Detection of external insect infestations in jujube fruit using hyperspectral reflectance imaging. Biosystems Engineering 108:345-351. https://doi.org/10.1016/j.biosystemseng.2011.01.006
  102. Wang, F. M., J. F. Huang and X. Z. Wang. 2008. Identification of optimal hyperspectral bands for estimation of rice biophysical parameters. J. Integr. Plant Biol. 50(3):291-299. https://doi.org/10.1111/j.1744-7909.2007.00619.x
  103. West, J. S., C. Bravo, R. Oberti, D. Lemaire, D. Moshou and H. A. McCartney. 2003. The potential of optical canopy measurement for targeted control of field crop diseases. Annual Review of Phytopathology 41:593-614. https://doi.org/10.1146/annurev.phyto.41.121702.103726
  104. Williams, P., M. Manley, G. Fox and P. Geladi. 2010. Indirect detection of Fusarium verticillioides in maize (Zea mays L.) kernels by near infrared hyperspectral imaging. Journal of Near Infrared Spectroscopy 18(1):49-58. https://doi.org/10.1255/jnirs.858
  105. Xenics. 2016. Xenics Infrared Solutions. Available at: ww.xenics.com
  106. Xiao, J. and L. Xu. 2010. Monitoring Impact of Heavy Metal on Wheat Leaves from Sewage Irrigation by Hyperspectral Remote Sensing. In: Geoscience and Remote Sensing (IITA-GRS), 2010 Second IITA International Conference 298-301, Qingdao, IEEE.
  107. Xing, J., C. Bravo, P. T. Jancsok, H. Ramon and J. D. Baerdemaeker. 2005. Detecting Bruises on 'Golden Delicious' Apples using Hyperspectral Imaging with Multiple Wavebands. Biosystems Engineering 90(1): 27-36. https://doi.org/10.1016/j.biosystemseng.2004.08.002
  108. Yang, C., W. S. Lee and J. G. Williamsonb. 2012. Classification of blueberry fruit and leaves based on spectral signatures. Biosystems Engineering 113(4): 351-362. https://doi.org/10.1016/j.biosystemseng.2012.09.009
  109. Zhensheng, K. and H. Buchenauer. 2000. Cytology and ultrastructure of the infection of wheat spikes by Fusarium culmorum. Mycological Research 104(09): 1083-1093. https://doi.org/10.1017/S0953756200002495
  110. Zhu, Y., Y. Li, W. Feng, Y. Tian, X. Yao and W. Cao. 2006. Monitoring leaf nitrogen in wheat using canopy reflectance spectra. Can. J. Plant Sci 86(4):1037-1046. https://doi.org/10.4141/P05-157
  111. Zwiggelaar, R. 1998. A review of spectral properties of plants and their potential use for crop/weed discrimination in row-crops. Crop Prot 17(3):189-206. https://doi.org/10.1016/S0261-2194(98)00009-X
  112. Zygielbaum, A. I., A. A. Gitelson, T. J. Arkebauer and D. C. Rundquist. 2009. Nondestructive detection of water stress and estimation of relative water content in maize. Geophys. Res. Lett 36(12):L12403. https://doi.org/10.1029/2009GL038906

Cited by

  1. Determination of the total volatile basic nitrogen (TVB-N) content in pork meat using hyperspectral fluorescence imaging vol.259, 2018, https://doi.org/10.1016/j.snb.2017.12.102