DOI QR코드

DOI QR Code

Influence factor analysis on the measurement of smoke density from floor materials in rolling stock

철도차량 바닥재 연기밀도 측정의 영향인자분석

  • Kwon, Tae-Soon (Railroad Safety Research Division, Korea Railroad Research Institute) ;
  • Lee, Duck-Hee (Railroad Safety Research Division, Korea Railroad Research Institute) ;
  • Park, Won-Hee (Railroad Safety Research Division, Korea Railroad Research Institute)
  • 권태순 (한국철도기술연구원 철도안전연구실) ;
  • 이덕희 (한국철도기술연구원 철도안전연구실) ;
  • 박원희 (한국철도기술연구원 철도안전연구실)
  • Received : 2016.08.02
  • Accepted : 2016.11.10
  • Published : 2016.11.30

Abstract

In this study, we investigated the effect of factors that influence the measurement of smoke density using synthetic rubber flooring. The characteristics of rolling stock in an enclosed environment can cause enormous loss of life by smoke inhalation during fires inside passenger cars. The amount of smoke generation from interior materials for rolling stock is strictly restricted domestically and in other countries. Precise measurement of smoke density is therefore required to assess the fire performance of interior materials. Major factors that influence the measurement of smoke density include the uniformity of the specimen, the variations in conditions and instruments, and the operational and maintenance environment of the instruments. The contribution of factors was analyzed by estimating the uncertainty to investigate the contribution ratios of the major factors. The results show a contribution ratio of about 86% for the variation from the measurement of light transmission using a photomultiplier tube. Thus, this factor was the most representative for the measurement of smoke density. The contribution ratio of the other factors was low at about 11%, including irradiant flux conditions (${\pm}0.5 kW/m^2$) and the influence of the operational and maintenance environment of the instrument. These results were obtained using specimens with high uniformity.

본 연구에서는 철도차량 내장재 화재성능평가기준 중 연기밀도 측정에서 주요 인자들의 영향을 합성고무바닥재를 이용하여 분석 및 검토하였다. 밀폐된 공간에서 운영되는 철도차량의 특성 상, 객실 내부에서 화재 발생 시에 연기로 인해 막대한 인명피해가 발생할 수 있다. 따라서 국내 외의 철도운영국가에서는 내장재의 연기 발생량을 엄격하게 규제하고 있으며, 이를 위해 내장재의 화재성능평가에 있어 연기밀도의 정확한 측정이 요구된다. 연기밀도의 측정에 있어 주요 영향인자로 시료 고유의 균질도, 장비를 이용한 조건 및 측정의 편차 그리고 장비를 운용 관리하는 환경의 영향을 꼽을 수 있다. 각 인자별 연기밀도에 영향도를 확인하기 위하여 불확도 추정에 따른 기여율 분석을 수행하였다. 그 결과, 광센서(PM tube)를 이용한 투과율 측정편차의 기여율이 약 86 %로 연기밀도 측정의 대표 영향인자임을 확인할 수 있었다. 그리고 높은 균질도를 가지는 시료를 대상으로 한 연기밀도 측정에서는 그 외 영향인자(시료연소용 복사열 조건(${\pm}0.5 kW/m^2$) 및 장비의 운용 관리환경)의 기여율이 약 11 %로 낮음을 확인할 수 있었다.

Keywords

References

  1. Ministry of Land, Infrastructure and Transport, Technical specifications for railway vehicles, 2016.
  2. British Standards Institution, Railway applications -Fire protection on railway vehicles : Part 2: Requirements for fire behaviour of materials and components (BS EN 45545-2), 2013.
  3. T. S. Kwon, W. H. Park, "The Study on the Operation of Fire Fighting Vehicle for a Long Railway Tunnel," Journal of the Korea Academia-Industrial Cooperation Society, vol. 17, no. 5, pp. 516-521, 2016. DOI: http://dx.doi.org/10.5762/KAIS.2016.17.5.516
  4. International Organization for Standardization, Plastics -Smoke generation - Part 2: Determination of optical density by a single-chamber test (ISO 5659-2), 2012.
  5. American Society for Testing and Materials, Standard Test Method for Specific Optical Density of Smoke Generated by Solid Materials (ASTM E662), 2015.
  6. M. Y. Choi, G. W. Mulholand, A. Hamins, T. Kashiwagi, "Comparison of the Soot Volume Fraction using Gravimetric and Light Extinction Technique," Combustion and Flame, vol. 102, no. 1-2, pp. 161-169, 1995. DOI: http://dx.doi.org/10.1016/0010-2180(94)00282-W
  7. G. W. Mulholand, E. L. Johnsson, M. G. Fernandez, D. A. Shear, "Design and Testing of a New Smoke Concentration Meter," Fire and Materials, vol. 24, no. 5, pp. 231-243, 2000. DOI: http://dx.doi.org/10.1002/1099-1018(200009/10)24:5 231::AID-FAM743>3.3.CO;2-E
  8. J. Tissot, M. Talbaut, J. Yon, A. Coppalle, A. Bescond, "Spectral Study of the Smoke Optical Density in Non-flaming Conditionl," Procedia Engineering, Vol. 62, pp. 821-828, 2013. DOI: http://dx.doi.org/10.1016/j.proeng.2013.08.131
  9. International Organization for Standardization, Guide to the expression of uncertainty in measurement (GUM), 1995.
  10. Korea Laboratory Accreditation Scheme, Guide to the estimation and expression in measurement, 2016.