DOI QR코드

DOI QR Code

Determination of Veterinary Antibiotic Residues: IV. Comparable Analytical Methods with EPA Methods 1694_A Review

시료 중 잔류 항생제 분석 방법: IV. EPA method 1694와 비교 가능한 기기 분석 방법

  • Kim, Chansik (Watershed and Total Load Management Research Division, Water Environment Research Department, National Institute of Environmental Research) ;
  • Ryu, Hong-Duck (Watershed and Total Load Management Research Division, Water Environment Research Department, National Institute of Environmental Research) ;
  • Chung, Eu Gene (Watershed and Total Load Management Research Division, Water Environment Research Department, National Institute of Environmental Research) ;
  • Kim, Yongseok (Watershed and Total Load Management Research Division, Water Environment Research Department, National Institute of Environmental Research) ;
  • Rhew, Doug Hee (Watershed and Total Load Management Research Division, Water Environment Research Department, National Institute of Environmental Research)
  • 김찬식 (국립환경과학원 물환경연구부 유역총량연구과) ;
  • 류홍덕 (국립환경과학원 물환경연구부 유역총량연구과) ;
  • 정유진 (국립환경과학원 물환경연구부 유역총량연구과) ;
  • 김용석 (국립환경과학원 물환경연구부 유역총량연구과) ;
  • 류덕희 (국립환경과학원 물환경연구부 유역총량연구과)
  • Received : 2016.08.23
  • Accepted : 2016.11.21
  • Published : 2016.11.30

Abstract

In this study, 16 antibiotics were selected from among the top 30 veterinary antibiotics sold in South Korea in 2014, as well as from among the pharmaceuticals targeted by EPA method 1694, in order to review analytical methods for the detection of trace levels of antibiotics in environmental samples: surface water, soils, animal origin foods, and manures. LC-MS/MS was heavily used. In the chromatography for the detection of the selected antibiotics, the $C_{18}$ column was mostly used at the temperature of $30{\sim}40^{\circ}C$. Water and methanol/acetonitrile were commonly chosen as a nonpolar and a polar mobile phase, respectively. Gradient elution was applied to separate multiclass antibiotics. Volatile additives, such as formic acid, acetic acid, and ammonium acetate were mixed with the mobile phase to improve the ionization efficiency of analytes and the sensitivity in MS detection. Electrospray ionization (ESI) was widely used in the LC-MS/MS and positive ionization was preferred to determine the selected antibiotics. A protonated $[M+H]^+$ molecule was selected as a precursor ion, and its two transitions were analyzed, one for quantitative measurement and the other for confirmation. This study reviewed linearity of the calibration curve, recovery, repeatability, method detection limits (MDLs), and method quantification limits (MQLs) for each target compound used to validate the developed analytical methods.

Keywords

References

  1. Aguilera-Luiz, M. M., Vidal, J. M., Romero-Gonzalez, R., and Frenich, A. G. (2012). Multiclass Method for Fast Determination of Veterinary Drug Residues in Baby Food by Ultra- High-Performance Liquid Chromatography-Tandem Mass Spectrometry, Food Chemistry, 132(4), pp. 2171-2180. https://doi.org/10.1016/j.foodchem.2011.12.042
  2. Avisar, D., Primor, O., Gozlan, I., and Mamane, H. (2010). Sorption of Sulfonamides and Tetracyclines to Montmorillonite Clay, Water, Air, & Soil Pollution, 209(1-4), pp. 439-450. https://doi.org/10.1007/s11270-009-0212-8
  3. Babic, S., Asperger, D., Mutavdzic, D., Horvat, A. J., and Kastelan-Macan, M. (2006). Solid Phase Extraction and HPLC Determination of Veterinary Pharmaceuticals in Wastewater, Talanta, 70(4), pp. 732-738. https://doi.org/10.1016/j.talanta.2006.07.003
  4. Behera, S. K., Kim, H. W., Oh, J. E., and Park, H. S. (2011). Occurrence and Removal of Antibiotics, Hormones and Several Other Pharmaceuticals in Wastewater Treatment Plants of the Largest Industrial City of Korea, Science of the Total Environment, 409(20), pp. 4351-4360. https://doi.org/10.1016/j.scitotenv.2011.07.015
  5. Ben, W., Qiang, Z., Adams, C., Zhang, H., and Chen, L. (2008). Simultaneous Determination of Sulfonamides, Tetracyclines and Tiamulin in Swine Wastewater by Solid-Phase Extraction and Liquid Chromatography-Mass Spectrometry, Journal of Chromatography A, 1202(2), pp. 173-180. https://doi.org/10.1016/j.chroma.2008.07.014
  6. Bohm, D. A., Stachel, C. S., and Gowik, P. (2012). Validation of a Multi-Residue Method for the Determination of Several Antibiotic Groups in Honey by LC-MS/MS, Analytical and Bioanalytical Chemistry, 403(10), pp. 2943-2953. https://doi.org/10.1007/s00216-012-5868-z
  7. Boscher, A., Guignard, C., Pellet, T., Hoffmann, L., and Bohn, T. (2010). Development of a Multi-Class Method for the Quantification of Veterinary Drug Residues in Feedingstuffs by Liquid Chromatography-Tandem Mass Spectrometry, Journal of Chromatography A, 1217(41), pp. 6394-6404. https://doi.org/10.1016/j.chroma.2010.08.024
  8. Bonnet, R. (2004). Growing Group of Extended-Spectrum ${\beta}$-Lactamases: the CTX-M Enzymes, Antimicrobial Agents and Chemotherapy, 48(1), pp. 1-14. https://doi.org/10.1128/AAC.48.1.1-14.2004
  9. Bronzwear, S. L. A. M., Cars, O., Buchholz, U., Molstad, S., Goettsch, W., Veldhuijzen, I. K., Kool, J. L., Sprenger, M. J., and Degener, J. E. (2002). A European Study on The Relationship of Antimicrobial Use and Antimicrobial Resistance, Emerging Infectious Diseases, 8(3), pp. 278-282. https://doi.org/10.3201/eid0803.010192
  10. Carretero, V., Blasco, C., and Pico, Y. (2008). Multi-Class Determination of Antimicrobials in Meat by Pressurized Liquid Extraction and Liquid Chromatography-Tandem Mass Spectrometry, Journal of Chromatography A, 1209(1), pp. 162-173. https://doi.org/10.1016/j.chroma.2008.09.011
  11. Castiglioni, S., Bagnati, R., Calamari, D., Fanelli, R., and Zuccato, E. (2005). A Multiresidue Analytical Method Using Solid-Phase Extraction and High-Pressure Liquid Chromatography Tandem Mass Spectrometry to Measure Pharmaceuticals of Different Therapeutic Classes in Urban Wastewaters, Journal of Chromatography A, 1092(2), pp. 206-215. https://doi.org/10.1016/j.chroma.2005.07.012
  12. Centers for Disease Control and Preventation (CDC). (2013). Antibiotic Resistance Threats in the United States, 2013, Center for Disease Control and Prevention, US Department of Health and Human Services, Atlanta, Georgia, pp. 13-17.
  13. Centers for Disease Control and Preventation (CDC). (2015). http://www.cdc.gov/narms/about/index.html.
  14. Dasenaki, M. E. and Thomaidis, N. S. (2010). Multi-Residue Determination of Seventeen Sulfonamides and Five Tetracyclines in Fish Tissue Using a Multi-Stage LC-ESI-MS/MS Approach Based on Advanced Mass Spectrometric Techniques, Analytica Chimica Acta, 672(1), pp. 93-102. https://doi.org/10.1016/j.aca.2010.04.034
  15. Dolliver, H., Gupta, S., and Noll, S. (2008). Antibiotic Degradation During Manure Composting. Journal of Environmental Quality, 37(3) pp. 1245-1253. https://doi.org/10.2134/jeq2007.0399
  16. EU Commission. (2002). Commission Decision EC 2002/657 of 12 August 2002 Implementing Council Directive 96/23/EC Concerning the Performance of Analytical Methods and the Interpretation of Results, Official Journal of European Communities, L 221, pp. 8-36.
  17. Fiese, E. F. and Steffen, S. H. (1990). Comparison of the Acid Stability of Azithromycin and Erythromycin A, Journal of Antimicrobial Chemotherapy, 25(suppl A), pp. 39-47.
  18. Freitas, A., Barbosa, J., and Ramos, F. (2014). Multi-Residue and Multi-Class Method for the Determination of Antibiotics in Bovine Muscle by Ultra-High-Performance Liquid Chromatography Tandem Mass Spectrometry, Meat Science, 98(1), pp. 58-64. https://doi.org/10.1016/j.meatsci.2014.04.003
  19. Gao, L., Shi, Y., Li, W., Niu, H., Liu, J., and Cai, Y. (2012). Occurrence of antibiotics in eight sewage treatment plants in Beijing, China, Chemosphere, 86(6), pp. 665-671. https://doi.org/10.1016/j.chemosphere.2011.11.019
  20. Gbylik-Sikorska, M., Posyniak, A., Sniegocki, T., and Zmudzki, J. (2015). Liquid Chromatography-Tandem Mass Spectrometry Multiclass Method for the Determination of Antibiotics Residues in Water Samples from Water Supply Systems in Food-Producing Animal Farms, Chemosphere, 119, pp. 8-15. https://doi.org/10.1016/j.chemosphere.2014.04.105
  21. Goossens, H., Ferech, M., Vander Stichele, R., Elseviers, M., and ESAC Project Group. (2005). Outpatient Antibiotic Use in Europe and Association with Resistance: a Cross-National Database Study, The Lancet, 365(9459), pp. 579-587. https://doi.org/10.1016/S0140-6736(05)70799-6
  22. Gorissen, B., Reyns, T., Devreese, M., De Backer, P., Van Loco, J., and Croubels, S. (2015). Determination of Selected Veterinary Antimicrobials in Poultry Excreta by UHPLC-MS/MS, for Application in Salmonella Control Programs, Analytical and Bioanalytical Chemistry, 407(15), pp. 4447-4457. https://doi.org/10.1007/s00216-014-8449-5
  23. Gros, M., Rodriguze-Mozaz, S., and Barcelo, D. (2013). Rapid Analysis of Multiclass Antibiotic Residues and Some of Their Metabolites in Hospital, Urban Wastewater and River Water by Ultra-High-Performance Liquid Chromatography Coupled to Quadrupole-Linear Ion Trap Tandem Mass Spectrometry, Journal of Chromatography A, 1292, pp. 173-188. https://doi.org/10.1016/j.chroma.2012.12.072
  24. Han, R. W., Zheng, N., Yu, Z. N., Wang, J., Xu, X. M., Qu, X. Y., Li, S. L., Zhang, Y. D., and Wang, J. Q. (2015). Simultaneous Determination of 38 Veterinary Antibiotic Residues in Raw Milk by UPLC-MS/MS, Food Chemistry, 181, pp. 119-126. https://doi.org/10.1016/j.foodchem.2015.02.041
  25. Hao, C., Lissemore, L., Nguyen, B., Kleywegt, S., Yang, P., and Solomon, K. (2006). Determination of Pharmaceuticals in Environmental Waters by Liquid Chromatography/Electrospray Ionization/Tandem Mass Spectrometry, Analytical and Bioanalytical Chemistry, 384(2), pp. 505-513.
  26. Hirsch, R., Ternes, T. A., Haberer, K., Mehlich, A., Ballwanz, F., and Kratz, K. L. (1998). Determination of Antibiotics in Different Water Compartments via Liquid Chromatography-Electrospray Tandem Mass Spectrometry, Journal of Chromatography A, 815(2), pp. 213-223. https://doi.org/10.1016/S0021-9673(98)00335-5
  27. Ho, Y. B., Zakaria, M. P., Latif, P. A., and Saari, N. (2012). Simultaneous Determination of Veterinary Antibiotics and Hormone in Broiler Manure, Soil and Manure Compost by Liquid Chromatography-Tandem Mass Spectrometry, Journal of Chromatography A, 1262, pp. 160-168. https://doi.org/10.1016/j.chroma.2012.09.024
  28. Ho, Y. B., Zakaria, M. P., Latif, P. A., and Saari, N. (2014). Occurrence of Veterinary Antibiotics and Progesterone in Broiler Manure and Agricultural Soil in Malaysia, Science of the Total Environment, 488, pp. 261-267.
  29. Hong, Y., Sharma, V. K., Chiang, P. C., and Kim, H. (2015). Fast-Target Analysis and Hourly Variation of 60 Pharmaceuticals in Wastewater Using UPLC-High Resolution Mass Spectrometry, Archives of Environmental Contamination and Toxicology, 69(4), pp. 525-534. https://doi.org/10.1007/s00244-015-0214-z
  30. Hou, J., Wan, W., Mao, D., Wang, C., Mu, Q., Qin, S., and Luo, Y. (2015). Occurrence and Distribution of Sulfonamides, Tetracyclines, Quonolones, Macrolides, and Nitrofurans in Livestock Manure and Amended Soils of Northern China, Environmental Science and Pollution Research, 22(6), pp. 4545-4554. https://doi.org/10.1007/s11356-014-3632-y
  31. Hur, J., Jawale, C., and Lee, J. H. (2012). Antimicrobial Resistance of Salmonella Isolated from Food Animals: A Review, Food Research International, 45(2), pp. 819-830. https://doi.org/10.1016/j.foodres.2011.05.014
  32. Iglesias, A., Nebot, C., Miranda, J. M., Vazquez, B. I., and Cepeda, A. (2012). Detection and Quantitative Analysis of 21 Veterinary Drugs in River Water Using High-pressure Liquid Chromatography Coupled to Tandem Mass Spectrometry, Environmental Science and Pollution Research, 19(8), pp. 3235-3249. https://doi.org/10.1007/s11356-012-0830-3
  33. Jacobsen, A. M. and Halling-Sorensen, B. (2006). Multi-Component Analysis of Tetracyclines, Sulfonamides and Tylosin in Swine Manure by Liquid Chromatography-Tandem Mass Spectrometry, Analytical and Bioanalytical Chemistry, 384(5), pp. 1164-1174. https://doi.org/10.1007/s00216-005-0261-9
  34. Kaklamanos, G., Vincent, U., and von Holst, C. (2013). Analysis of Antimicrobial Agents in Pig Feed by Liquid Chromatography Coupled to Orbitrap Mass Spectrometry, Journal of Chromatography A, 1293, pp. 60-74. https://doi.org/10.1016/j.chroma.2013.03.078
  35. Kartal, S. N. (2003). Removal of Copper, Chromium, and Arsenic from CCA-C Treated Wood by EDTA Extraction, Waste Management, 23(6), pp. 537-546. https://doi.org/10.1016/S0956-053X(02)00143-5
  36. Karthikeyan, K. G. and Meyer, M. T. (2006). Occurrence of Antibiotics in Wastewater Treatment Facilities in Wisconsin, USA, Science of the Total Environment, 361(1), pp. 196-207. https://doi.org/10.1016/j.scitotenv.2005.06.030
  37. Kim, Y., Lim, S., Han, M., and Cho, J. (2012). Sorption Characteristics of Oxytetracycline, Amoxicillin, and Sulfathiazole in Two Different Soil Types, Geoderma, 185, pp. 97-101.
  38. Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., and Buxton, H. T. (2002). Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in US Streams, 1999-2000: A National Reconnaissance, Environmental Science & Technology, 36(6), pp. 1202-1211. https://doi.org/10.1021/es011055j
  39. Korea Ministry of Government Legislation. (2015). Act On The Management and Use of Livestock Excreta, 13526, Korea Ministry of Government Legislation.
  40. Li, J. D., Cai, Y. Q., Shi, Y. L., Mou, S. F., and Jiang, G. B. (2007). Determination of Sulfonamide Compounds in Sewage and River by Mixed Hemimicelles Solid-Phase Extraction Prior to Liquid Chromatography-Spectrophotometry, Journal of Chromatography A, 1139(2), pp. 178-184. https://doi.org/10.1016/j.chroma.2006.11.023
  41. Li, W., Shi, Y., Gao, L., Liu, J., and Cai, Y. (2012). Occurrence of Antibiotics in Water, Sediments, Aquatic Plants, and Animals from Baiyangdian Lake in North China, Chemosphere, 89(11), pp. 1307-1315. https://doi.org/10.1016/j.chemosphere.2012.05.079
  42. Li, Z., Chang, P. H., Jean, J. S., Jiang, W. T., and Wang, C. J. (2010). Interaction Between Tetracycline and Smectite in Aqueous Solution, Journal of Colloid and Interface Science, 341(2), pp. 311-319. https://doi.org/10.1016/j.jcis.2009.09.054
  43. Lim S. K., Lee, J. E., Lee, H. S., Nam, H. M., Moon, D. C., Jang, G. C., Park, Y. J., Jung, Y. G., Jang, S. C., and Wee, S. H. (2014). Trends in Antimicrobial Sales for Livestock and Fisheries in Korea During 2003-2012, Korean Journal of Veterinary Research, 54(2), pp. 81-86. [Korean Literature] https://doi.org/10.14405/kjvr.2014.54.2.81
  44. Lindsey, M. E., Meyer, M., and Thurman, E. M. (2001). Analysis of Trace Levels of Sulfonamide and Tetracycline Antimicrobials in Groundwater and Surface Water Using Solid-Phase Extraction and Liquid Chromatography/Mass Spectrometry, Analytical Chemistry, 73(19), pp. 4640-4646. https://doi.org/10.1021/ac010514w
  45. Locatelli, M. A. F., Sodre, F. F., and Jardim, W. F. (2011). Determination of Antibiotics in Brazilian Surface Waters Using Liquid Chromatography-Electrospray Tandem Mass Spectrometry, Archives of Environmental Contamination and Toxicology, 60(3), pp. 385-393. https://doi.org/10.1007/s00244-010-9550-1
  46. Lopes, R. P., Reyes, R. C., Romero-Gonzalez, R., Vidal, J. L. M., and Frenich, A. G. (2012). Multiresidue Determination of Veterinary Drugs in Aquaculture Fish Samples by Ultra High Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry, Journal of Chromatography B, 895, pp. 39-47.
  47. Martinez-Carballo, E., Gonzalez-Barreiro, C., Scharf, S., and Gans, O. (2007). Environmental Monitoring Study of Selected Veterinary Antibiotics in Animal Manure and Soils in Austria, Environmental Pollution, 148(2), pp. 570-579. https://doi.org/10.1016/j.envpol.2006.11.035
  48. Malintan, N. T. and Mohd, M. A. (2006). Determination of Sulfonamides in Selected Malaysian Swine Wastewater by High-Performance Liquid Chromatography, Journal of Chromatography A, 1127(1), pp. 154-160. https://doi.org/10.1016/j.chroma.2006.06.005
  49. McArdell, C. S., Molnar, E., Suter, M. J. F., and Giger, W. (2003). Occurrence and Fate of Macrolide Antibiotics in Wastewater Treatment Plants and in the Glatt Valley Watershed, Switzerland, Environmental Science & Technology, 37(24), pp. 5479-5486. https://doi.org/10.1021/es034368i
  50. Nakata, H., Kannan, K., Jones, P. D., and Giesy, J. P. (2005). Determination of Fluoroquinolone Antibiotics in Wastewater Effluents by Liquid Chromatography-Mass Spectrometry and Fluorescence Detection, Chemosphere, 58(6), pp. 759-766. https://doi.org/10.1016/j.chemosphere.2004.08.097
  51. National Institute of Environmental Research (NIER). (2010). Environmental Examination・Inspection QA/QC Handbook, 2nd ed, 11-1480083-000291-01, National Institute of Environmental Research, pp. 21-25.
  52. Nebot, C., Iglesias, A., Regal, P., Miranda, J., Cepeda, A., and Fente, C. (2012). Development of a Multi-class Method for the Identification and Quantification of Residues of Antibiotics, Coccidiostats and Corticosteroids in Milk by Liquid Chromatography-Tandem Mass Spectrometry, International Dairy Journal, 22(1), pp.78-85. https://doi.org/10.1016/j.idairyj.2011.09.001
  53. Neu, H. C. (1992). The Crisis in Antibiotic Resistance, Science, 257(5073), pp. 1064-1073. https://doi.org/10.1126/science.257.5073.1064
  54. Prat, M. D., Benito, J., Compano, R., Hernandez-Arteseros, J. A., and Granados, M. (2004). Determination of Quinolones in Water Samples by Solid-Phase Extraction and Liquid Chromatography with Fluorimetric Detection, Journal of Chromatography A, 1041(1), pp. 27-33. https://doi.org/10.1016/j.chroma.2004.04.042
  55. Pfeifer, Y., Cullik, A., and Witte, W. (2010). Resistance to Cephalosporins and Carbapenems in Gram-Negative Bacterial Pathogens, International Journal of Medical Microbiology, 300(6), pp. 371-379. https://doi.org/10.1016/j.ijmm.2010.04.005
  56. Pozo, O. J., Guerrero, C., Sancho, J. V., Ibanez, M., Pitarch, E., Hogendoorn, E., and Hernandez, F. (2006). Efficient Approach for the Reliable Quantification and Confirmation of Antibiotics in Water Using On-Line Solid-Phase Extraction Liquid Chromatography/Tandem Mass Spectrometry, Journal of Chromatography A, 1103(1), pp. 83-93. https://doi.org/10.1016/j.chroma.2005.10.073
  57. Salvia, M. V., Vulliet, E., Wiest, L., Baudot, R., and Cren-Olive, C. (2012). Development of a Multi-Residue Method Using Acetonitrile-Based Extraction Followed by Liquid Chromatography-Tandem Mass Spectrometry for the Analysis of Steroids and Veterinary and Human Drugs at Trace Levels in Soil, Journal of Chromatography A, 1245, pp. 122-133. https://doi.org/10.1016/j.chroma.2012.05.034
  58. Schlusener, M. P., Con Arb, M. A., and Bester, K. (2006). Elimination of Macrolides Tiamulin and, Salinomycin During Manure Storage, Archives of Environmental Contamination and Toxicology, 51(1), pp. 21-28. https://doi.org/10.1007/s00244-004-0240-8
  59. Seifrtova, M., Novakova, L., Lino, C., Pena, A., and Solich, P. (2009). An Overview of Analytical Methodologies for the Determination of Antibiotics in Environmental Waters. Analytica Chimica Acta, 649(2), pp. 158-179. https://doi.org/10.1016/j.aca.2009.07.031
  60. Tang, Y. Y., Lu, H. F., Lin, H. Y., Shih, Y. C., and Hwang, D. F. (2012). Multiclass Analysis of 23 Veterinary Drugs in Milk by Ultraperformance Liquid Chromatography-Electrospray Tandem Mass Spectrometry, Journal of Chromatography B, 881, pp. 12-19.
  61. Tao, Y., Yu, G., Chen, D., Pan, Y., Liu, Z., Wei, H., Peng, D., Huang, L., Wang, Y., and Yuan, Z. (2012). Determination of 17 Macrolide Antibiotics and Avermectins Residues in Meat with Accelerated Solvent Extraction by Liquid Chromatography-Tandem Mass Spectrometry, Journal of Chromatography B, 897, pp. 64-71. https://doi.org/10.1016/j.jchromb.2012.04.011
  62. Tolls, J. (2001). Sorption of Veterinary Pharmaceuticals in Soils: A Review, Environmental Science & Technology, 35(17), pp. 3397-3406. https://doi.org/10.1021/es0003021
  63. United Nations, Department of Economic and Social Affairs, Population Division. (2015). World Population Prospects: The 2015 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP.241, United Nations, New York, pp. 2-3.
  64. United States Department of Agriculture (USDA). (2016). http://www.ars.usda.gov/Main/docs.htm? docid=6750&page=1.
  65. United States Environmental Protection Agency (U. S. EPA). (1984). Method 610: Polynuclear Aromatic Hydrocarbons, U.S. Environmental Protection Agency.
  66. United States Environmental Protection Agency (U. S. EPA). (1996). Method 8321A Solvent Extractable Nonvolatile Compounds by High Performance Liquid Chromatography/Thermospray/Mass Spectrometry (HPLC/TS/MS) or Ultraviolet (UV) Detection, U.S. Environmental Protection Agency.
  67. United States Environmental Protection Agency (U. S. EPA). (2007). Method 1694: Pharmaceuticals and Personal Care Products in Water, Soil, Sediment, and Biosolids by HPLC/MS/MS, EPA-821-R-08-002, U.S. Environmental Protection Agency, Washington, DC.
  68. United States Environmental Protection Agency (U. S. EPA). (2010). Method 1668A Interlaboratory Validation Study Report, EPA-820-R-10-004, U.S. Environmental Protection Agency, Washington, DC.
  69. United States Food and Drug Administration (U. S. FDA). (2015). http://www.fda.gov/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/default.html.
  70. Yang, J. F., Ying, G. G., Zhao, J. L., Tao, R., Su, H. C., and Chen, F. (2010). Simultaneous Determination of Four Classes of Antibiotics in Sediments of the Pearl Rivers Using RRLC-MS/MS, Science of the Total Environment, 408(16), pp. 3424-3432. https://doi.org/10.1016/j.scitotenv.2010.03.049
  71. Yang, S., Cha, J., and Carlson, K. (2004). Quantitative Determination of Trace Concentrations of Tetracycline and Sulfonamide Antibiotics in Surface Water Using Solid-Phase Extraction and Liquid Chromatography/Ion Trap Tandem Mass Spectrometry, Rapid Communications in Mass Spectrometry, 18(18), pp. 2131-2145. https://doi.org/10.1002/rcm.1598
  72. Zhou, L. J., Ying, G. G., Liu, S., Zhao, J. L., Chen, F., Zhang, R. Q., Peng, F. Q., and Zhang, Q. Q. (2012). Simultaneous Determination of Human and Veterinary Antibiotics in Various Environmental Matrices by Rapid Resolution Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry, Journal of Chromatography A, 1244, pp. 123-138. https://doi.org/10.1016/j.chroma.2012.04.076
  73. Zhou, L. J., Ying, G. G., Liu, S., Zhang, R. Q., Lai, H. J., Chen, Z. F., and Pan, C. G. (2013). Excretion Masses and Environmental Occurrence of Antibiotics in Typical Swine and Dairy Cattle Farms in China, Science of the Total Environment, 444, pp. 183-195. https://doi.org/10.1016/j.scitotenv.2012.11.087