DOI QR코드

DOI QR Code

The Antimicrobial Activity of Bacterial-challenged Black Soldier Fly, Hermetia illucens

세균에 의해 면역이 유도된 동애등에의 항균활성

  • Park, Kwanho (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Yun, Eun-Young (Graduate School of Integrated Bioindustry, Sejong University) ;
  • Park, Seung-Won (Department of Biotechnology, Catholic University of Daegu) ;
  • Goo, Tae-Won (Department of Biochemistry, School of Medicine, Dongguk University)
  • 박관호 (농촌진흥청 국립농업과학원 농업생물부) ;
  • 윤은영 (세종대학교 일반대학원 바이오산업융합과) ;
  • 박승원 (대구가톨릭대학교 생명공학과) ;
  • 구태원 (동국대학교 의과대학 생화학교실)
  • Received : 2016.08.05
  • Accepted : 2016.11.01
  • Published : 2016.12.30

Abstract

In the larvae of the black soldier fly, Hermetia illucens, innate immunity mechanisms are activated in response to various pathogens and stimulants, resulting in the expression of antimicrobial peptides (AMPs). To induce the mass production of AMPs, H. illucens fifth instar larvae were immunized with five different kinds of bacteria. We isolated from the hemolymph of the H. illucens larvae after bacterial challenge, and their antimicrobial activities against Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli) were measured using the inhibition zone assay. Among these five different kinds of bacteria, the hemolymph of Bacillus subtilis-challenged H. illucens larvae showed the strongest antimicrobial activity against both Gram-positive bacteria and Gram-negative bacteria. The antimicrobial activity of the hemolymph of $1{\times}10^9cfu/ml$ B. subtilis-challenged H. illucens peaks at 24 hr at 48 hr post-infection and gradually declines with time. Moreover, the immunized hemolymph also showed strong antimicrobial activity against various poultry pathogens such as S. enteritidis, S. typhimurium, and S. pullorum. These results suggest that the expression of AMP genes in B. subtilis-challenged H. illucens is up-regulated by innate immune responses, and that B. subtilis-challenged H. illucens overexpressing AMPs may be useful as a feed additive in livestock diets to reduce the need for antibiotics.

동애등에(Hermetia illucens)를 포함한 곤충은 불량환경에서 오랜 진화의 역사를 통해 병원균 침입에 대응하기 위하여 강력한 항균 펩타이드를 발현하는 선천성 면역기전을 보유하고 있다. 동애등에 생체 내 항균펩타이드를 인위적으로 유도하기 위하여, E. faecalis 포함한 5종의 세균을 한방침에 묻혀 주사하였다. 5종 세균에 의해 면역이 유도된 동애등에로부터 혈림프를 채취하여 각 세균에 따른 항균펩타이드 유도효과에 의한 항균활성을 그람양성균인 S. aureus와 그람음성균인 E. coli에 대해 비교 분석하였다. 그 결과, 고초균인 B. subtilis은 5종 세균 중 그람양성 및 음성균 둘 다에 대해서 가장 높은 항균활성을 나타내었다. B. subtilis ($1{\times}10^9cfu/ml$)에 의해 면역이 유도된 동애등에는 주사 후 24시간째 가장 강한 항균활성을 나타내었다. 또한 B. subtilis에 의해 면역이 유도된 동애등에는 가금류의 주요 병원균인 S. enteritidis, S. typhimurium 및 S. pullorum에 대해서도 높은 항균활성을 나타내었다. 이상의 결과로써, B. subtilis에 의해 면역이 유도된 동애등에는 가축 성장촉진용 항생제를 대체할 수 있는 사료첨가제로써 매우 유용할 것으로 판단된다.

Keywords

References

  1. Andreu, D. and Rivas, L. 1998. Animal antimicrobial peptides: an overview. Biopolymers 47, 415-433. https://doi.org/10.1002/(SICI)1097-0282(1998)47:6<415::AID-BIP2>3.0.CO;2-D
  2. Baltzer, S. A. and Brown, M. H. 2011. Antimicrobial peptides: promising alternatives to conventional antibiotics. J. Mol. Microbiol. Biotechnol. 20, 228-235. https://doi.org/10.1159/000331009
  3. Barton, M. D. 2000. Antibiotic use in animal feed and its impact on human health. Nutr. Res. Rev. 13, 279-299. https://doi.org/10.1079/095442200108729106
  4. Boman, H. G. 1995. Peptide antibiotics and their role in innate immunity. Annu. Rev. Immunol. 13, 61-92. https://doi.org/10.1146/annurev.iy.13.040195.000425
  5. Brogden K. A. 2005. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria. Nat. Rev. Microbiol. 3, 238-250. https://doi.org/10.1038/nrmicro1098
  6. Bulet, P., Hetru, C., Dimarcq, J. L. and Hoffmann, D. 1999. Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol. 23, 329-344. https://doi.org/10.1016/S0145-305X(99)00015-4
  7. Casteels, P., Ampe, C., Riviere, L., Damme, J. V., Elicone, C., Fleming, M., Jacobs, F. and Tempst, P. 1990. Isolation and characterization of abaecin, a major antibacterial response peptide in the honeybee (Apis mellifera). Eur. J. Biochem. 187, 381-386. https://doi.org/10.1111/j.1432-1033.1990.tb15315.x
  8. Choi, Y. C., Park, K. H., Nam, S. H., Jang, B. G., Kim, J. H., Kim, D. W. and Yu, D. J. 2013. The effect on growth performance of chicken meat in broiler chicks by dietary supplementation of black soldier fly larvae, Hermetia illucens (Diptera : Stratmyidae). J. Seric. Entomol. Sci. 51, 30-35.
  9. Goo, T. W., Yun, E. Y., Kim, S. W., Choi, K. H., Kang, S. W, Kwon, K., Yu, K. and Kwon, O. Y. 2008. Bombyx mori protein disulfide isomerase enhances the production of nuecin, an antibacterial protein. BMB Rep. 41, 400-403. https://doi.org/10.5483/BMBRep.2008.41.5.400
  10. Goo, T. W, Yun, E. Y, Kim, S. W., Choi, K. H, Kang, S. W., Kwon, K., Choi, J. S. and Kwon, O. Y. 2008. Secretion of the antibacterial recombinant protein enbocin. Z. Naturforsch C. 63, 284-288.
  11. Hoffman, J. A., Kafatos, F. C., Janeway, C. A. and Ezekowitz, R. A. 1999. Phylogenetic perspectives in innate immunity. Science 284, 1313-1318. https://doi.org/10.1126/science.284.5418.1313
  12. Kaneko, Y., Furukawa, S., Tanaka, H. and Yamakawa, M. 2007. Expression of antimicrobial peptide genes encoding Enbocin and Gloverin isoforms in the silkworm, Bombyx mori. Biosci. Biotechnol. Biochem. 71, 2233-2241. https://doi.org/10.1271/bbb.70212
  13. Kang, H. K., Seo, O. S., Choi, H. C., Chae, H. S., Na, J. C., Bang, H. T., Kim, D. W., Park, S. B, Kim, M. J. and Jung, S. H. 2010. Effect of dietary supplementation of chlorella powder on production performances, blood components. Kor J. Poult Sci. 27th Regular Conference 106-108.
  14. Kim, A. R., Lee, Y. J., Kang, M. S., Kwag, S. I. and Cho, J. K. 2007. Dissemination and tracking of Salmonella spp. in integrated broiler operation. J. Vet. Sci. 8, 155-161. https://doi.org/10.4142/jvs.2007.8.2.155
  15. Kim, S. R., Lee, E. M., Yoon, H. J., Choi, Y. S., Yun, E. Y., Hwang, J. S., Jin, B. R., Lee, I. H. and Kim, I. 2007. Antibactrial activity of peptides synthesized based on the Bombus ignitus abaecin, a novel prolinerich antimicrobial peptide. Int. J. Indust. Entomol. 14, 147-150.
  16. Lee, H. W., Hong, C. H. and Jung, B. Y. 2007. Characteristics of Salmonella spp. isolated from poultry carcasses. Kor. J. Vet. Serv. 30, 339-351.
  17. Looft, T., Johnson, T. A., Allen, H. K., Bayles, D. O., Alt, D. P., Stedtfeld, R. D., Sul, W. J., Stedtfeld, T. M., Chai, B., Cole, J. R., Hashsham, S. A., Tiedje, J. M. and Stantona, T. B. 2012. In-feed antibiotic effects on the swine intestinal microbiome. Proc. Natl. Acad. Sci. USA 109, 1691-1696. https://doi.org/10.1073/pnas.1120238109
  18. Olsen, S. J., MacKinon, L. C., Goulding, J. S., Bean, N. H. and Slutsker, L. 2000. Surveillance for foodborne disease outbreaks-United States, 1993-1997. MMWR Surveill Summ. 49, 1-51.
  19. Otvos, L. Jr. 2000. Antibacterial peptides isolated from insects. J. Pept. Sci. 6, 497-511. https://doi.org/10.1002/1099-1387(200010)6:10<497::AID-PSC277>3.0.CO;2-W
  20. Park, S. I., Kim, J. W. and Yoe, S. M. 2015. Purification and characterization of a novel antibacterial peptide from black soldier fly (Hermetia illucens) larvae. Dev. Comp. Immunol. 52, 98-106. https://doi.org/10.1016/j.dci.2015.04.018
  21. Sugiyama, M., Kuniyoshi, H., Kotani, E., Taniai, K., Kadono-Okuda, K., Kato, Y., Yamamoto, M., Shimabukuro, M., Chowdhury, S. and Xu, J. 1995. Characterization of a Bombyx mori cDNA encoding a novel member of the attacin family of insect antibacterial proteins. Insect Biochem. Mol. Biol. 25, 385-392. https://doi.org/10.1016/0965-1748(94)00080-2
  22. Tanaka, H., Ishibashi, J., Fujita, K., Nakajima, Y., Sagisaka, A., Tomimoto, K., Suzuki, N., Yoshiyama, M., Kaneko, Y., Iwasaki, T., Sunagawa, T., Yamaji, K., Asaoka, A., Mita, K. and Yamakawa, M. 2008. A genome-wide analysis of genes and gene families involved in innate immunity of Bombyx mori. Insect Biochem. Mol. Biol. 38, 1087-1110. https://doi.org/10.1016/j.ibmb.2008.09.001
  23. Walkenhorst, W. F., Klein, J. W., Vo, P. and Wimley, W. C. 2013. pH Dependence of microbe sterilization by cationic antimicrobial peptides. Antimicrob. Agents Chemother. 7, 3312-3320.
  24. Yi, H. Y., Chowdhury, M., Huang, Y. D. and Yu, X. Q. 2014. Insect antimicrobial peptides and their applications. Appl. Microbiol. Biotechnol. 98, 5807-5822. https://doi.org/10.1007/s00253-014-5792-6
  25. Yoo, J. H., Park, G. H., Sung, J. S., Song, H. N., Shin, S. Y., Jung, W. H. and Jung, M. H. 2014. Feed additives in broiler diets to produce healthy chickens without in-feed antimicrobial compounds. CNU Journal of Agricultural Science 41, 441-453.
  26. Yun, E. Y., Lee, J. K., Kwon, O. Y., Hwang, J. S., Kim, I., Kang, S. W., Lee, W. J., Ding, J. L., You, K. H. and Goo, T. W. 2009. Bombyx mori transferrin: genomic structure, expression and antimicrobial activity of recombinant protein. Dev. Comp. Immunol. 33, 1064-1069. https://doi.org/10.1016/j.dci.2009.05.008
  27. Zasloff, M. 2002. Antimicrobial peptides of muticellular organism. Nature 415, 329-344.

Cited by

  1. Influence of Hermetia illucens Larvae-Derived Functional Feed Additives on Immune Function of Broilers vol.27, pp.12, 2018, https://doi.org/10.5322/JESI.2018.27.12.1305