DOI QR코드

DOI QR Code

Comparison of the Mechanical Properties between Bulk-fill and Conventional Composites

Bulk-fill 복합레진과 전통적 복합레진의 물성비교

  • Noh, Taehwan (Department of Pediatric Dentistry, School of Dentistry, Pusan National University) ;
  • Song, Eunju (Department of Pediatric Dentistry, School of Dentistry, Pusan National University) ;
  • Park, Soyoung (Department of Pediatric Dentistry, School of Dentistry, Pusan National University) ;
  • Pyo, Aeri (Department of Dental Materials, School of Dentistry, Pusan National University) ;
  • Kwon, Yonghoon (Department of Dental Materials, School of Dentistry, Pusan National University) ;
  • Kim, Jiyeon (Department of Pediatric Dentistry, School of Dentistry, Pusan National University) ;
  • Kim, Shin (Department of Pediatric Dentistry, School of Dentistry, Pusan National University) ;
  • Jeong, Taesung (Department of Pediatric Dentistry, School of Dentistry, Pusan National University)
  • 노태환 (부산대학교 치의학전문대학원 소아치과학교실) ;
  • 송은주 (부산대학교 치의학전문대학원 소아치과학교실) ;
  • 박소영 (부산대학교 치의학전문대학원 소아치과학교실) ;
  • 표애리 (부산대학교 치의학전문대학원 치과재료학교실) ;
  • 권용훈 (부산대학교 치의학전문대학원 치과재료학교실) ;
  • 김지연 (부산대학교 치의학전문대학원 소아치과학교실) ;
  • 김신 (부산대학교 치의학전문대학원 소아치과학교실) ;
  • 정태성 (부산대학교 치의학전문대학원 소아치과학교실)
  • Received : 2015.11.05
  • Accepted : 2015.12.16
  • Published : 2016.11.30

Abstract

Composites are the most useful restorative material. However, composites have some disadvantages such as polymerization shrinkage, long working time, and susceptibility to water and contamination, which are stood out more especially when treating children. To solve these problems, bulk-fill composites have been developed. The aim of this study is to compare mechanical properties of bulk-fill and conventional composites. Bulk-fill composites (SureFil SDR flow (SDR), Tetric N-Ceram bulk fill (TBF)) and conventional composites (Filtek Z-350 (Z-350), Unifil Flow (UF), Unifil Loflo Plus (UL)) were used. The Vickers hardness tester was used to measure the microhardness of materials, and Fourier transform infrared spectroscopy was used to measure the degree of conversion. Polymerization shrinkage was measured by using a linometer. Flexural and compressive properties were measured by using the universal testing machine. Data were statistically analyzed by ANOVA and Scheffe's post hoc test. The level of significance was set to p < 0.05. Most conventional composites showed higher microhardness than bulk-fill composites. However, bulk-fill composites showed a higher top/bottom microhardness ratio than conventional composites. Bulk-fill composites showed a higher top/bottom degree of conversion ratio than conventional composites. The polymerization shrinkage was highest in UL and lowest in Z-350. The polymerization shrinkage of flowable composites was higher than that of non flowable composites. The compressive properties were highest in Z-350 and lowest in SDR and UL. In terms of flexural properties, Z-350 was the highest. However, none of the bulk-fill composites exhibited mechanical properties as good as those of conventional composites. Nonetheless, the ratio of microhardness and degree of conversion, which are important properties of bulk filling, were higher in bulk-fill composites. Therefore, the bulk-fill composites might be considered suitable restorative materials in pediatric dentistry.

치아우식증을 치료할 때 가장 많이 사용되는 수복재료 중 하나는 레진이다. 하지만 레진은 중합수축, 긴 작업시간, 수분 및 오염에 민감하다는 단점들이 존재하고 어린이를 치료할 때 더 두드러진다. 이러한 단점들을 해결하기 위해 bulk filling이 나타나게 되었고, 이를 가능하게 하는 bulk-fill 복합레진이 개발되었다. 본 연구의 목적은 전통적 복합레진과 bulk-fill 복합레진의 물성을 다양한 방법으로 평가 및 비교하기 위함이다. 전통적 복합레진 3 종류(Filtek Z-350 (Z-350), Unifil Flow (UF), Unifil Loflo Plus (UL)), bulk-fill 복합레진 2종류 (SureFil SDR flow (SDR), Tetric N-Ceram bulk fill (TBF))를 사용하였다. 광중합기는 light-emitting diodes를 사용하였고, 한번 중합할 때 20초간 시행하였다. 재료들의 미세경도는 비커스경도기로 측정하였고, 중합도 측정은 Fourier transform infrared spectroscopy을 사용하였다. 중합수축량은 컴퓨터로 제어되는 linometer를 이용하였다. 굴곡강도 및 굴곡계수는 3점 굽힘 시험법으로 측정하였고, 압축강도 및 압축계수와 함께 Universal testing machine을 이용하여 측정하였다. 통계분석은 ANOVA를 사용하였고, Scheffe의 사후검정을 하였다. 미세경도는 상면에서 Z-350이 가장 높은 값을 나타냈고, 하면은 TBF가 높은 값을 나타냈으나 UL은 상하면 모두에서 가장 낮은 값을 보였다. 상면과 하면의 미세경도 값의 비는 SDR, TBF가 높았다. 중합도는 bulk-fill 복합레진과 유동성 복합레진 상하면 모두에서 높게 나타나고, Z-350는 상하면 모두에서 55% 이하로 나타났다. 압축강도는 Z-350이 가장 높았으며 SDR이 낮게 나타났으나 UL과는 통계학적으로 유의하게 차이는 보이지 않았다. 압축계수는 Z-350이 높게 나타났고, UL이 가장 낮았다. 굴곡강도 및 굴곡계수는 Z-350이 가장 높았다. UL은 굴곡강도 및 굴곡계수 모두 가장 낮게 나타났다. UL이 가장 높은 중합수축을 보였고, Z-350이 가장 낮은 중합수축 값을 나타냈다. 유동성 복합레진이 비유동성 복합레진보다 중합 수축 양이 많았다. 결론적으로 bulk-fill 복합레진의 물성은 전통적 복합레진보다 떨어지지만 bulk filling할 때 중요한 상하면의 미세경도비 및 중합도는 높게 나타나 어린이의 치아우식증 수복치료 시 도움이 될 수 있을 것으로 사료된다.

Keywords

References

  1. Rueggeberg FA : From vulcanite to vinyl, a history of resins in restorative dentistry. J Prosthet Dent, 87:364-379, 2002. https://doi.org/10.1067/mpr.2002.123400
  2. Kwon YH, Park JK, Kim JH, et al. : Polymerization shrinkage, flexural and compression properties of low-shrinkage dental resin composites. Dent Mater, 33:104-110, 2014. https://doi.org/10.4012/dmj.2013-126
  3. Gee AF, Feilzer AJ, Davidson CL : True linear polymerization shrinkage of unfilled resins and composites determined with a linometer. Dent Mater, 9:11-14, 1993. https://doi.org/10.1016/0109-5641(93)90097-A
  4. Krejci I, Planinic M, Bouillaguet S, et al. : Resin composite shrinkage and marginal adaptation with different pulse-delay light curing protocols. Eur J Oral Sci, 113:531-536, 2005. https://doi.org/10.1111/j.1600-0722.2005.00259.x
  5. Versluis A, Douglas WH, Sakaguchi RL, et al. : Does an incremental filling technique reduce polymerization shrinkage stresses? J Dent Res, 75:871-878, 1996. https://doi.org/10.1177/00220345960750030301
  6. Kim IY, Kim JM, Shin Kim, et al. : 5 years evaluation of composite resin restoration on permanent first molar in children. J Korean Acad Pediatr Dent, 35:110-117, 2008.
  7. Benetti AR, Havndrup-Pedersen C, Pallesen U, et al. : Bulk-fill resin composites: polymerization contraction, depth of cure, and gap formation. Oper Dent, 40:190-200, 2015. https://doi.org/10.2341/13-324-L
  8. Christensen GJ : Advantages and challenges of Bulk-fill resins. Clinicians Report, 5:1-2, 2012.
  9. Jang JH, Park SH, Hwang IN : Polymerization shrinkage and depth of cure of bulk-fill composites and highly filled flowable resin. Oper Dent, 40:172-180, 2015. https://doi.org/10.2341/13-307-L
  10. Ilie N, Bucuta S, Draenert M : Bulk-fill Resin-based Composites: An In Vitro Assessment of Their Mechanical Performance. Oper Dent, 38:618-625, 2013. https://doi.org/10.2341/12-395-L
  11. Craig RG : Chemistry, composition, and properties of composite resins. Dent Clin North Am, 25:219-239, 1981.
  12. Par M, Gamulin O, Tarle Z, et al. : Effect of temperature on post-cure polymerization of bulk-fill composites. J Dent, 42:1255-1260, 2014. https://doi.org/10.1016/j.jdent.2014.08.004
  13. Bucuta S, Ilie N : Light transmittance and micromechanical properties of bulk fill vs conventional resin based composites. Clin Oral Investig, 18:1991-2000, 2014. https://doi.org/10.1007/s00784-013-1177-y
  14. Roulet JF, Walti C : Influence of oral fluid on composite resin and glass-ionomer cement. J Prosthet Dent, 52:182-189, 1984. https://doi.org/10.1016/0022-3913(84)90092-1
  15. Ilie N, Schoner C, Hickel R, et al. : An in-vitro assessment of the shear bond strength of bulk-fill resin composite to permanent and deciduous teeth. J Dent, 42:850-855, 2014. https://doi.org/10.1016/j.jdent.2014.03.013
  16. Alshali RZ, Silikas N, Satterthwaite JD : Degree of conversion of bulk-fill compared to conventional resin-composites at two time intervals. Dent Mater, 29:e213-e217, 2013. https://doi.org/10.1016/j.dental.2013.05.011
  17. de Gee AJ, ten Harkel-Hagenaar E, Davidson CL : Color dye for identification of incompletely cured composite resins. J Prosthet Dent, 52:626-631, 1984. https://doi.org/10.1016/0022-3913(84)90129-X
  18. Sideridou I, Tserki V, Papanastasiou G : Effect of chemical structure on degree of conversion in lightcured dimethacrylate-based dental resins. Biomater, 23:1819-1829, 2002. https://doi.org/10.1016/S0142-9612(01)00308-8
  19. Rodrigues Junior SA, Zanchi CH, Demarco FF, et al. : Flexural strength and modulus of elasticity of different types of resin-based composites. Braz Oral Res, 21:16-21, 2007.
  20. Ferracane JL : Resin-based composite performance: are there some things we can't predict? Dent Mater, 29:51-58, 2013. https://doi.org/10.1016/j.dental.2012.06.013
  21. Ilie N, Hickel R : Investigations on a methacrylatebased flowable composite based on the SDR technology. Dent Mater, 27:348-355, 2011. https://doi.org/10.1016/j.dental.2010.11.014
  22. Khatri CA, Stansbury JW, Antonucci JM, et al. : Synthesis, characterization and evaluation of urethane derivatives of Bis-GMA. Dent Mater, 19:584-588, 2003. https://doi.org/10.1016/S0109-5641(02)00108-2
  23. Zivko-Babic J, Panduric J, Jakovac M, et al. : Bite force in subjects with complete dentition. Coll Antropol, 26:293-302, 2002.
  24. Mountain G, Wood D, Toumba J : Bite force measurement in children with primary dentition. Int J Paediatr Dent, 21:112-118, 2011. https://doi.org/10.1111/j.1365-263X.2010.01098.x
  25. Lee HB, Seo HW, Park HW, et al. : Evaluation of shear bond strength and microleakage of bulk-fill resin composite. J Korean Acad Pediatr Dent, 42:281-290, 2015. https://doi.org/10.5933/JKAPD.2015.42.4.281
  26. Campos EA, Ardu S, Krejci I, et al. : Marginal adaptation of class II cavities restored with bulk-fill composites. J Dent, 42:575-581, 2014. https://doi.org/10.1016/j.jdent.2014.02.007