DOI QR코드

DOI QR Code

Effects of Cooking Methods with Different Heat Intensities on Antioxidant Activity and Physicochemical Properties of Garlic

열처리 조리방법이 마늘의 항산화 활성과 이화학적 특성에 미치는 영향

  • Jo, Hyeri (Department of Food and Nutrition, Kangwon National University) ;
  • Surh, Jeonghee (Department of Food and Nutrition, Kangwon National University)
  • 조혜리 (강원대학교 식품영양학과) ;
  • 서정희 (강원대학교 식품영양학과)
  • Received : 2016.08.03
  • Accepted : 2016.11.07
  • Published : 2016.12.31

Abstract

Garlic was subjected to eight different cooking methods (raw, boiling, steaming, microwave cooking, deep-frying, oven-roasting, pan-frying, and pan-roasting) utilized for typical Korean cuisine. Garlic was analyzed for antioxidant activities and physicochemical properties to elucidate effects of cooking. Garlic cooked at higher temperatures showed significantly lower lightness and higher yellowness (P<0.001). In particular, deep-frying and pan-frying resulted in lowest lightness and soluble solid content, indicating that non-enzymatic browning reactions were more facilitated. Compared with raw garlic, all cooked garlic tended to have lower thiosulfinates, presumably due to decomposition into polysulfides and/or leaching into cooking water and oil. Microwave cooking retained organic acids, total reducing capacity, and flavonoids, which can be attributed to low microwave intensity and shorter cooking time under which heat-labile bioactive components might have undergone less decomposition. Cooking significantly increased metal-chelating activity (P<0.001). In addition, oven-roasting and pan-roasting enhanced total reducing capacity and flavonoid content, indicating that thermal treatments increased the extractability of bioactive components from garlic. However, boiling, deep-frying, and pan-frying, in which garlic is in contact directly with a hot cooking medium, reduced antioxidant activities. Deep-frying resulted in largest reduction in DPPH radical scavenging activity of garlic, which correlated well with reduction of total reducing capacity and flavonoid content. The results show that the antioxidant activity of garlic could be affected by cooking method, particularly heat intensity and/or direct contact of the cooking medium.

한국인이 마늘을 섭취할 때 주로 사용하는 조리방법으로 8종의 마늘을 준비하여 조리 조건이 마늘의 항산화 활성과 이화학적 특성에 미치는 영향을 살펴보았다. 열처리 강도가 높은 조리법일수록 마늘의 수분 손실이 컸으며, 명도는 낮아지고 황색도는 높아지는 전형적 갈변 현상을 나타내었다. 특히 명도가 가장 낮았던 프라잉과 팬 프라잉으로 조리된 마늘에서는 수용성 고형분 함량 역시 유의적으로 낮아 조리온도가 높을수록 수용성 저분자 물질로부터 불용성 고분자 중합물질을 형성하는 비효소적 갈변반응이 더 가속화되었음을 시사해주었다. 한편 조리된 마늘은 생마늘보다 thiosulfinates 함량이 낮았으며, 이는 열처리에 의해 thiosulfinates가 polysulfides로 분해되었거나, 열전달 매체를 사용한 삶기, 프라잉, 팬 프라잉으로 조리된 마늘에서는 이들 물질이 열전달 매체로 용출되었을 가능성을 시사해주었다. 전자레인지로 조리된 마늘은 다른 마늘보다 유기산과 thiosulfinates, 플라보노이드 성분들이 상대적으로 많이 보유되어 있었으며, 이는 에너지가 낮고 조리시간이 짧은 전자레인지 가열방식에 의해 마늘 속 열에 약한 성분들이 상대적으로 덜 분해된 결과로 볼 수 있다. 높은 온도에서 조리된 마늘들은 총 환원력과 금속 소거능이 높은 경향을 나타내었으며, 이는 색도 결과에 의해 시사된 것과 같이 환원력을 지닌 갈변반응의 중간물질과 최종물질들이 고온 조리 시 더 활발히 생성된 결과로 해석되었다. 물과 기름을 열전달 매체로 하여 조리된 마늘에서는 총 환원력과 플라보노이드 함량이 상대적으로 낮은 경향을 나타내었다. 그러나 생마늘과 조리된 마늘에서 측정된 총 환원력과 플라보노이드 정량 결과는 DPPH 라디칼 소거능 결과와는 다소 일치하지 않았다. 이는 환원성 물질들의 총량이 증가하였음에도 불구하고 우수한 항산화 활성을 지닌 일부 열에 불안정한 플라보노이드와 페놀 화합물들이 조리 중 감소하였을 가능성을 말해준다. 따라서 조리 중 마늘 내부에서 분해 혹은 새로이 생성될 수 있는 개별 환원성 물질들의 조성과 항산화 활성 비교에 대한 후속연구가 필요할 것으로 생각한다.

Keywords

References

  1. Locatelli DA, Altamirano JC, Gonzalez RE, Camargo AB. 2015. Home-cooked garlic remains a healthy food. J Funct Foods 16: 1-8. https://doi.org/10.1016/j.jff.2015.04.012
  2. Pedraza-Chaverri J, Medina-Campos ON, Avila-Lombardo R, Zuniga-Bustos AB, Orozco-Ibarra M. 2006. Reactive oxygen species scavenging capacity of different cooked garlic preparations. Life Sci 78: 761-770. https://doi.org/10.1016/j.lfs.2005.05.075
  3. Food and Agriculture Organization of the United Nations Statistics Division (FAOSTAT). Production, Food Balance. http://faostat3.fao.org/download/Q/QC/E (accessed Jul 2016).
  4. Ministry of Food and Drug Safety. Functional Ingredients Information: Garlic. www.foodsafetykorea.go.kr/portal/board/board.do?menu_no=1782&menu_grp=MENU_GRP02 (accessed Jul 2016).
  5. van Boekel M, Fogliano V, Pellegrini N, Stanton C, Scholz G, Lalljie S, Somoza V, Knorr D, Jasti PR, Eisenbrand G. 2010. A review on the beneficial aspects of food processing. Mol Nutr Food Res 54: 1215-1247. https://doi.org/10.1002/mnfr.200900608
  6. Manzocco L, Calligaris S, Mastrocola D, Nicoli MC, Lerici CR. 2000. Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends Food Sci Technol 11: 340-346. https://doi.org/10.1016/S0924-2244(01)00014-0
  7. Nicoli MC, Anese M, Parpinel MT, Franceschi S, Lerici CR. 1997. Loss and/or formation of antioxidants during food processing and storage. Cancer Lett 114: 71-74. https://doi.org/10.1016/S0304-3835(97)04628-4
  8. Kim JS, Kang OJ, Gweon OC. 2013. Comparison of phenolic acids and flavonoids in black garlic at different thermal processing steps. J Funct Foods 5: 80-85. https://doi.org/10.1016/j.jff.2012.08.006
  9. Cortez-Garcia RM, Ortiz-Moreno A, Zepeda-Vallejo LG, Necoechea-Mondragon H. 2015. Effect of cooking methods on phenolic compounds in xoconostle (Opuntia joconostle). Plant Foods Hum Nutr 70: 85-90. https://doi.org/10.1007/s11130-014-0465-2
  10. Dewanto V, Wu X, Adom KK, Liu RH. 2002. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50: 3010-3014. https://doi.org/10.1021/jf0115589
  11. Xu G, Ye X, Chen J, Liu D. 2007. Effect of heat treatment on the phenolic compounds and antioxidant capacity of citrus peel extract. J Agric Food Chem 55: 330-335. https://doi.org/10.1021/jf062517l
  12. Bae SE, Cho SY, Won YD, Lee SH, Park HJ. 2014. Changes in S-allyl cysteine contents and physicochemical properties of black garlic during heat treatment. LWT-Food Sci Technol 55: 397-402. https://doi.org/10.1016/j.lwt.2013.05.006
  13. Han J, Lawson L, Han G, Han P. 1995. A spectrophotometric method for quantitative determination of allicin and total garlic thiosulfinate. Anal Biochem 225: 157-160. https://doi.org/10.1006/abio.1995.1124
  14. Singleton VL, Orthofer R, Lamuela-Raventos RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method Enzymol 299: 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
  15. Zhishen J, Mengcheng T, Jianming W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64: 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
  16. Chew YL, Goh JK, Lim YY. 2009. Assessment of in vitro antioxidant capacity and polyphenolic composition of selected medicinal herbs from Leguminosae family in Peninsular Malaysia. Food Chem 116: 13-18. https://doi.org/10.1016/j.foodchem.2009.01.091
  17. Brand-Williams W, Cuvelier ME, Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28: 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  18. Koh E, Ryu D, Surh J. 2015. Ratio of malondialdehyde to hydroperoxides and color change as an index of thermal oxidation of linoleic acid and linolenic acid. J Food Process Preserv 39: 318-326. https://doi.org/10.1111/jfpp.12411
  19. National Rural Resources Development Institute. 2006. Food Composition Table. 7th ed. National Rural Resources Development Institute, Suwon, Korea. p 118.
  20. Sikorski ZE, Pokorny J, Damodaran S. 2008. Physical and chemical interaction of components in food systems. In Fennema's Food Chemistry. 4th ed. Damodaran S, Parkin KL, Fennema OR, eds. CRC Press, Boca Raton, FL, USA. p 849-883.
  21. Ho CT, Rafi MM, Ghai G. 2008. Bioactive substances: nutraceuticals and toxicants. In Fennema's Food Chemistry. Damodaran S, Parkin KL, Fennema OR, eds. CRC Press, Boca Raton, FL, USA. p 751-779.
  22. Igual M, Garcia-Martinez E, Camacho MM, Martinez-Navarrete N. 2010. Effect of thermal treatment and storage on the stability of organic acids and the functional value of grapefruit juice. Food Chem 118: 291-299. https://doi.org/10.1016/j.foodchem.2009.04.118
  23. Lindsay RC. 2008. Flavors. In Fennema's Food Chemistry. Damodaran S, Parkin KL, Fennema OR, eds. CRC Press, Boca Raton, FL, USA. p 639-687.
  24. Gazzani G, Papetti A, Massolini G, Daglia M. 1998. Anti- and prooxidant activity of water soluble components of some common diet vegetables and the effect of thermal treatment. J Agric Food Chem 46: 4118-4122. https://doi.org/10.1021/jf980300o
  25. Crozier A, Lean MEJ, McDonald MS, Black C. 1997. Quantitative analysis of the flavonoid content of commercial tomatoes, onions, lettuce, and celery. J Agric Food Chem 45: 590-595. https://doi.org/10.1021/jf960339y
  26. Turkmen N, Sari F, Velioglu YS. 2005. The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chem 93: 713-718. https://doi.org/10.1016/j.foodchem.2004.12.038
  27. Harakotr B, Suriharn B, Tangwongchai R, Scott MP, Lertrat K. 2014. Anthocyanin, phenolics and antioxidant activity changes in purple waxy corn as affected by traditional cooking. Food Chem 164: 510-517. https://doi.org/10.1016/j.foodchem.2014.05.069

Cited by

  1. Relative Importance of Selection Attributes in Garlic-Based Health Functional Food Using Conjoint Analysis vol.29, pp.4, 2016, https://doi.org/10.17495/easdl.2019.8.29.4.336
  2. 국내산 퀴노아의 조리방법에 따른 영양성분 비교 vol.33, pp.2, 2020, https://doi.org/10.9799/ksfan.2020.33.2.117
  3. Optimization of Alcohol Metabolic Enzyme Activity of an Extract of Citrus sunki Hort. Tanaka Peel by Response Surface Methodology vol.50, pp.7, 2021, https://doi.org/10.3746/jkfn.2021.50.7.707