DOI QR코드

DOI QR Code

Effect of Li3BO3 Additive on Densification and Ion Conductivity of Garnet-Type Li7La3Zr2O12 Solid Electrolytes of All-Solid-State Lithium-Ion Batteries

  • Shin, Ran-Hee (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Son, Sam-Ick (Central Research Institute, Hyundai Motors) ;
  • Lee, Sung-Min (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Han, Yoon Soo (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Yong Do (Department of Materials Science & Engineering, Hanyang University) ;
  • Ryu, Sung-Soo (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
  • 투고 : 2016.10.04
  • 심사 : 2016.10.28
  • 발행 : 2016.11.30

초록

In this study, we investigate the effect of the$Li_3BO_3$ additive on the densification and ionic conductivity of garnet-type $Li_7La_3Zr_2O_{12}$ solid electrolytes for all-solid-state lithium batteries. We analyze their densification behavior with the addition of $Li_3BO_3$ in the range of 2-10 wt.% by dilatometer measurements and isothermal sintering. Dilatometry analysis reveals that the sintering of $Li_7La_3Zr_2O_{12}-Li_3BO_3$ composites is characterized by two stages, resulting in two peaks, which show a significant dependence on the $Li_3BO_3$ additive content, in the shrinkage rate curves. Sintered density and total ion conductivity of the system increases with increasing $Li_3BO_3$ content. After sintering at $1100^{\circ}C$ for 8 h, the $Li_7La_3Zr_2O_{12}-8$ wt.% $Li_3BO_3$ composite shows a total ionic conductivity of $1.61{\times}10^{-5}Scm^{-1}$, while that of the pure $Li_7La_3Zr_2O_{12}$ is only $5.98{\times}10^{-6}Scm^{-1}$.

키워드

참고문헌

  1. P. Knauth, "Inorganic Solid Li Ion Conductors: An Overview," Solid State Ionics, 180 [14-16] 911-16 (2009). https://doi.org/10.1016/j.ssi.2009.03.022
  2. J. W. Fergus, "Ceramic and Polymeric Solid Electrolytes for Lithium-ion Batteries," J. Power Sources, 195 [15] 4554-69 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.076
  3. Y. Inaguma, L.Q. Chen, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta, and M. Wakihara, "High Ionic Conductivity in Lithium Lanthanum Titanate," Solid State Commun., 86 [10] 689-93 (1993). https://doi.org/10.1016/0038-1098(93)90841-A
  4. Y. Inaguma, L. Q. Chen, M. Itoh, and T. Nakamura, "Candidate Compounds with Perovskite Structure for High Lithium Ionic Conductivity," Solid State Ionics, 70 196-202 (1994).
  5. G. Y. Adachi, N. Imanaka, and H. Aono, "Fast Li-circle Plus Conducting Ceramic Electrolytes," Adv. Mater., 8 [2] 127-35 (1996). https://doi.org/10.1002/adma.19960080205
  6. H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, and G. Y. Adachi, "Ionic Conductivity of the Lithium Titanium Phosphate($Li1+xMXTi_2-x(PO_4)_3$,M=Al, Sc, Y, and La) Systems," J. Electrochem. Soc., 136 [2] 590-91 (1989). https://doi.org/10.1149/1.2096693
  7. K. Arbi, J. M. Rojo, and J. Sanz, "Lithium Mobility in Titanium based NASICON $Li1+xTi_2-xAlx(PO_4)_3$ and $LiTi_2-xZrx(PO_4)_3$ Materials Followed by NMR and Impedance Spectroscopy," J. Eur. Ceram. Soc., 27 [13] 4215-18 (2007). https://doi.org/10.1016/j.jeurceramsoc.2007.02.118
  8. H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, and G. Adachi, "Electrical Property and Sinterability of $LiTi_2(PO4)_3$ Mixed with Lithium Salt ($Li_3PO_4$ or $Li_3BO_3$)," Solid State Ionics, 47 [3-4] 257-64 (1991) . https://doi.org/10.1016/0167-2738(91)90247-9
  9. R. Kanno, T. Hata, Y. Kawamoto, and M. Irie, "Synthesis of a New Lithium Ionic Conductor, Thio-LISICON-lithium Germanium Sulfide System," Solid State Ionics, 130 [1-2] 97-104 (2000). https://doi.org/10.1016/S0167-2738(00)00277-0
  10. M. Murayama, R. Kanno, M. Irie, S. Ito, T. Hata, N. Sonoyama, and Y. Kawamoto, "Synthesis of a New Lithium Ionic Conductor, Thio-LISICON-lithium Silicon Sulfide System," J. Solid State Chem., 168 [1] 140-48 (2002). https://doi.org/10.1006/jssc.2002.9701
  11. V. Thangadurai, H. Kaack, and W. J. F. Weppner, "Novel Fast Lithium Ion Conduction in Garnet-type $Li_5La_3M_2O_{12}$ (M=NB, Ta)," J. Am. Ceram. Soc., 86 [3] 437-40 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03318.x
  12. V. Thangadurai, and W. J. F. Weppner, "$Li_6ALa_2Ta_2O_{12}$ (A = Sr, Ba): Novel Garnet-like Oxides for Fast Lithium Ion Conduction," Adv. Funct. Mater., 15 [1] 107-12 (2005). https://doi.org/10.1002/adfm.200400044
  13. R. Murugan, W. Weppner, P. Schmid-Beurmann, and V. Thangadurai, "Structure and Lithium Ion Conductivity of Garnet-like $Li_5La_3Sb_2O_{12}$ and $Li_6SrLa_2Sb_2O_{12}$," Mater. Res. Bull., 43 [10] 2579-91 (2008). https://doi.org/10.1016/j.materresbull.2007.10.035
  14. R. Murugan, V. Thangadurai, and W. Weppner, "Fast Lithium Ion Conduction in Garnet-type $Li_7La_3Zr_2O_{12}$," Angew. Chem. Int. Ed., 46 [41] 7778-81 (2007). https://doi.org/10.1002/anie.200701144
  15. E. J. Cussen, "The Structure of Lithium Garnets: Cation Disorder and Clustering in a New Family of Fast Li+ Conductors," Chem. Commun., 37 [4] 412-13 (2006).
  16. M. Huang, T. Liu, Y. Deng, H. Geng, Y. Shen, Y. Lin, and W. Nan, "Effect of Sintering Temperature on Structure and Ionic Conductivity of $Li_7-xLa_3Zr_2O_{12}−0.5x$ (x = 0.5 - 0.7) Ceramics," Solid State Ionics, 204 [1] 41-5 (2011).
  17. Y.-H. Cho, J. Wolfenstine, E. Rangasamy, H. Kim, H. Choe, and J. Sakamoto, "Mechanical Properties of the Solid Electrolyte: $Li_{0.33}La_{0.57}TiO_3$," J. Mater. Sci., 47 [16] 5970-77 (2012). https://doi.org/10.1007/s10853-012-6500-5
  18. K. Tadanaga, R. Takano, T. Ichinose, S. Mori, A. Hayashi, and M. Tatsumisago, "Low Temperature Synthesis of Highly Ion Conductive $Li_7La_3Zr_2O_{12}- Li_3BO_3$ Composites," Electrochem. Commun., 33 51-4 (2013). https://doi.org/10.1016/j.elecom.2013.04.004
  19. R. Takano, K. Tadanaga, A. Hayashi, and M. Tatsumisago, "Low Temperature Synthesis of Al-doped $Li_7La_3Zr_2O_{12}$ Solid Electrolyte by a Sol-gel Process," Solid State Ionics, 255 [1] 104-7 (2014). https://doi.org/10.1016/j.ssi.2013.12.006
  20. S. Ohta, S. Komagata, J. Seki, T. Saeki, S. Morishita, and T. Asaoka, "All-solid-state Lithium Ion Battery Using Garnet-type Oxide and $Li_3BO_3$ Solid Electrolytes Fabricated by Screen-printing," J. Power Sources, 238 53-6 (2013). https://doi.org/10.1016/j.jpowsour.2013.02.073
  21. N. Janani, C. Deviannapoorani, L. Dhivya, and R. Murugan, "Influence of Sintering Additives on Densification and Li+ Conductivity of Al doped $Li_7La_3Zr_2O_{12}$ Lithium Garnet," RSC Adv., 4 [93] 51228-38 (2014). https://doi.org/10.1039/C4RA08674K
  22. Y. Li, Y. Cao, and X. Guo, "Influence of Lithium Oxide Additives on Densification and Ionic Conductivity of Garnet-type $Li_{6.75}La_3Zr_{1.75}Ta_{0.25}O_{12}$ Solid Electrolytes," Solid State Ionics, 253 [1] 76-80 (2013). https://doi.org/10.1016/j.ssi.2013.09.005
  23. N. C. Rosero-Navarro, T. Yamashita, A. Miura, M. Higuchi, and K. Tadanaga, "Preparation of $Li_7La_3(Zr_2-x,\;Nbx)O_{12}$(x = 0-1.5) and $Li_3BO_3/LiBO_2$ Composites at Low Temperatures Using a Sol-gel Process," Solid State Ionics, 285 6-12 (2016). https://doi.org/10.1016/j.ssi.2015.06.015
  24. R. H. Shin, S. I. Son, Y. S. Han, Y. D. Kim, H. T. Kim, S. S. Ryu, and W. Pan, "Sintering Behavior of Garnet-type $Li_7-La_3Zr_2O_{12}-Li_3BO_3$ Composite Solid Electrolytes for All-solidstate lithium Batteries," Solid State Ionics, submitted.
  25. S. W. Baek, J. M. Lee, T. Y. Kim, M. S. Song, and Y. Park, "Garnet Related Lithium Ion Conductor Processed by Spark Plasma Sintering for All Solid State Batteries," J. Power Sources, 249 197-206 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.089

피인용 문헌

  1. Functional Li-M (Ti, Al, Co, Ni, Mn, Fe)-O Energy Materials vol.54, pp.1, 2017, https://doi.org/10.4191/kcers.2017.54.1.11
  2. Fabrication of PEO-PMMA-LiClO4-Based Solid Polymer Electrolytes Containing Silica Aerogel Particles for All-Solid-State Lithium Batteries vol.11, pp.10, 2018, https://doi.org/10.3390/en11102559
  3. Consolidating the grain boundary of the garnet electrolyte LLZTO with Li3BO3 for high-performance LiNi0.8Co0.1Mn0.1O2/LiFePO vol.7, pp.36, 2016, https://doi.org/10.1039/c9ta03263k
  4. Research Progresses of Garnet-Type Solid Electrolytes for Developing All-Solid-State Li Batteries vol.8, pp.None, 2020, https://doi.org/10.3389/fchem.2020.00468
  5. Solid versus Liquid-A Bottom‐Up Calculation Model to Analyze the Manufacturing Cost of Future High‐Energy Batteries vol.8, pp.3, 2016, https://doi.org/10.1002/ente.201901237
  6. Solid-state reactive sintering of dense and highly conductive Ta-doped Li7La3Z2O12 using CuO as a sintering aid vol.55, pp.35, 2016, https://doi.org/10.1007/s10853-020-05221-1
  7. Stabilization of Li0.33La0.55TiO3 Solid Electrolyte Interphase Layer and Enhancement of Cycling Performance of LiNi0.5Co0.3Mn0.2O2 Battery Cathode with Buffer Layer vol.11, pp.4, 2016, https://doi.org/10.3390/nano11040989
  8. Investigating the Calcination and Sintering of Li7La3Zr2O12 (LLZO) Solid Electrolytes Using Operando Synchrotron X-ray Characterization and Mesoscale Modeli vol.33, pp.12, 2021, https://doi.org/10.1021/acs.chemmater.0c04393