DOI QR코드

DOI QR Code

Effects of Composition, Structure Design, and Coating Thickness of Thermal Barrier Coatings on Thermal Barrier Performance

  • Jung, Sung-Hoon (School of Materials Science and Engineering, Changwon National University) ;
  • Jeon, Soo-Hyeok (School of Materials Science and Engineering, Changwon National University) ;
  • Lee, Je-Hyun (School of Materials Science and Engineering, Changwon National University) ;
  • Jung, Yeon-Gil (School of Materials Science and Engineering, Changwon National University) ;
  • Kim, In-Soo (High Temperature Materials Research Group, Korea Institute of Materials Science) ;
  • Choi, Baig-Gyu (High Temperature Materials Research Group, Korea Institute of Materials Science)
  • 투고 : 2016.08.09
  • 심사 : 2016.10.17
  • 발행 : 2016.11.30

초록

The effects of composition, structure design, and coating thickness of thermal barrier coating (TBC) on thermal barrier performance were investigated by measuring the temperature differences of TBC samples. TBCs with the thin and thick top coats were used for these studies, including TBCs with rare-earth (Gd, Yb, and La) compositions. The thermal barrier performance was enhanced with increasing the thickness of top coat even for thin TBCs, indicating that the thermal barrier performance was commensurate to the thickness of top coat. On the other hand, the bi-layered TBC, which was prepared with Yb-Gd-YSZ feedstock powder, with the buffer layer of high purity 8YSZ showed a better thermal barrier performance than that of regular purity 8YSZ. The interfaces in the bi-layered TBCs had a decisive effect on the thermal barrier performance, showing the performance enhanced with increasing numbers of interfaces. However, a new structural design and an additional process should be considered to reduce stress concentrations and to ensure interface stability, respectively, for improving thermal durability in the multi-layered TBCs.

키워드

참고문헌

  1. D. R. Clarke and S. R. Phillpot, "Thermal Barrier Coating Materials," Mater. Today, 8 [6] 22-9 (2005) https://doi.org/10.1016/S1369-7021(05)70934-2
  2. R. Vassen, M. O. Jarligo, T. Steinke, D. E. Mack, and D. Stover, "Overview on Advanced Thermal Barrier Coatings," Surf. Coat. Technol., 205 [4] 938-42 (2010). https://doi.org/10.1016/j.surfcoat.2010.08.151
  3. M. Gell, E. Jordan, K. Vaidyanathan, K. McCarron, B. Barber, Y. H. Sohn, and V. K. Tolpygo, "Bond Strength, Bond Stress and Spallation Mechanisms of Thermal Barrier Coatings," Surf. Coat. Technol., 120 [121] 53-60 (1999).
  4. H. Herman, S. Sampath, and R. McCune, "Thermal Spray: Current Status and Future Trends," MRS Bull., 25 [07] 17-25 (2000). https://doi.org/10.1557/mrs2000.119
  5. U. Schulz, C. Leyens, K. Fritscher, M. Peters, S. B. Bilge, O. Lavigne, J. M. Dorvaux, M. Poulain, R. Mevrel, and M. Caliez, "Some Recent Trends in Research and Technologyof Advanced Thermal Barrier Coatings," Aero. Sci. Technol., 7 [1] 73-80 (2003). https://doi.org/10.1016/S1270-9638(02)00003-2
  6. T. S. Sidhu, S. Prakash, and R. D. Agrawal, "Studies on the Properties of High-Velocity Oxy-Fuel Thermal Spray Coatings for Higher Temperature Applications," Surf. Coat. Technol., 41 [6] 805-23 (2009).
  7. X. Q. Cao, R. Vassen, and D. Stover, "Ceramic Materials for Thermal Barrier Coatings," J. Eur. Ceram. Soc., 24 [1] 1-10 (2004). https://doi.org/10.1016/S0955-2219(03)00129-8
  8. W. A. Nelson and R. M. Orenstein, "TBC Experience in Land-Based Gas Turbines," J. Therm. Spray Technol., 6 [2] 176-80 (1997). https://doi.org/10.1007/s11666-997-0009-5
  9. R. L. Jones, Metallurgical and Ceramic Protective Coatings: Thermal Barrier Coatings; pp. 194-235, Chapman and Hall, London, 1996.
  10. S. Paul, A. Cipitria, S. A. Tsipas, and T. W. Clyne, "Sintering Characteristics of Plasma Sprayed Zirconia Coatings Containing Different Stabilizers," Surf. Coat. Technol., 203 [8] 1069-74 (2009). https://doi.org/10.1016/j.surfcoat.2008.09.037
  11. A. G. Ebans, D. R. Mumm, J. W. Hutchinson, G. H. Meier, and F. S. Pettit, "Mechanisms Controlling the Durability of Thermal Barrier Coatings," Prog. Mater. Sci., 46 [5] 505-53 (2001). https://doi.org/10.1016/S0079-6425(00)00020-7
  12. D. R. Clarke, M. Oechsner, and N. P. Padture, "Thermal-Barrier Coatings for More Efficient Gas-Turbine Engines," MRS Bull., 37 [10] 891-98 (2012). https://doi.org/10.1557/mrs.2012.232
  13. D. R. Clarke and C. G. Levi, "Materials Design for the Next Generation Thermal Barrier Coatings," Annu. Rev. Mater. Res., 33 [1] 383-417 (2003). https://doi.org/10.1146/annurev.matsci.33.011403.113718
  14. R. A. Miller, "Current Status of Thermal Barrier Coatings an Overview," Surf. Coat. Technol., 30 [1] 1-11 (1987). https://doi.org/10.1016/0257-8972(87)90003-X
  15. C. G. Levi, "Emerging Materials and Processes for Thermal Barrier Systems," Curr. Opin. Solid State Mater. Sci., 8 [1] 77-91 (2004). https://doi.org/10.1016/j.cossms.2004.03.009
  16. L. Guo, H. Guo, H. Peng, and S. Gong, "Thermophysical Properties of $Yb_2O_3$doped $Gd_2Zr_2O_7$ and Thermal Cycling Durability of $(Gd_{0.9}Yb_{0.1})_2Zr_2O_7/YSZ$ Thermal Barrier Coatings," J. Eur. Ceram. Soc., 34 [5] 1255-63 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.11.035
  17. E. Bakan, D. E. Mack, G. Mauer, and R. Vassen, "Gadolinium Zirconate/YSZ Thermal Barrier Coatings: Plasma Spraying, Microstructure, and Thermal Cycling Behavior," J. Am. Ceram. Soc., 97 [12] 4045-51 (2014). https://doi.org/10.1111/jace.13204
  18. R. Vassen, X. Cao, F. Tietz, D. Basu, and D. Stover, "Zirconates as New Materials for Thermal Barrier Coatings," J. Am. Ceram. Soc., 83 [8] 2023-28 (2000).
  19. T. A. Taylor, "Low Thermal Expansion BondCoats for Thermal Barrier Coatings," US Patent, 7,910,225, (March 22, 2011).
  20. G. Dwivedi, V. Viswanathan, S. Sampath, A. Shyam, and L. C. Edgar, "Fracture Toughness of Plasma-Sprayed Thermal Barrier Ceramics: Influence of Processing, Microstructure, and Thermal Aging," J. Am. Ceram. Soc., 9 [9] 2736-44 (2014).
  21. J. M. Drexler, C. H. Chen, A. D. Gledhill, K. Shinoda, S. Sampath, and N. P. Padture, "Plasma Sprayed Gadolinium Zirconate Thermal Barrier Coatings that are Resistant to Damage by Molten Ca-Mg-Al-Silicate Glass," Surf. Coat. Technol., 206 [19-20] 3911-16 (2012). https://doi.org/10.1016/j.surfcoat.2012.03.051
  22. R. Vassen, F. Traeger, and D. Stover, "New Thermal Barrier Coatings Based on Pyrochlore/YSZ/ Double-Layer Systems," Inter. J. App. Ceram. Technol., 1 [4] 351-61 (2004). https://doi.org/10.1111/j.1744-7402.2004.tb00186.x
  23. L. Wang, Y. Wang, X. G. Sun, J.Q. He, Z. Y. Pan, and C. H. Wang, "Thermal Shock Behavior of 8YSZ and Double-Ceramic-Layer $La_2Zr_2O_7/8YSZ$ Thermal Barrier Coatings Fabricated by Atmospheric Plasma Spraying," Ceram. Inter., 38 [5] 3595-606 (2012). https://doi.org/10.1016/j.ceramint.2011.12.076
  24. P. W. Scholke, "Advanced Gas Turbine Materials and Coatings", (GE Energy, Schenectady, NY, 1991).
  25. V. Viswanathan, G. Dwivedi, and S. Sampath, "Engineered Multilayer Thermal Barrier Coatings for Enhanced Durability and Functional Performance," J. Am. Ceram. Soc., 97 [9] 2770-78 (2014). https://doi.org/10.1111/jace.13033
  26. A. N. Khan and J. Lu, "Behavior of Air Plasma Sprayed Thermal Barrier Coatings, Subject to Intense Thermal Cycling," Surf. Coat. Technol., 166 [1] 37-43 (2003). https://doi.org/10.1016/S0257-8972(02)00740-5
  27. K. Bobzin, N. Bagcivan, T. Brogelmann, and B. Yildirim, "Influence of Temperature on Phase Stability and Thermal Conductivity of Single and Double-Ceramic-Layer EB-PVD TBC Top Coats Consisting of 7YSZ, $Gd_2Zr_2O_7$ and $La_2Zr_2O_7$," Surf. Coat. Technol., 237 56-64 (2013). https://doi.org/10.1016/j.surfcoat.2013.08.013

피인용 문헌

  1. Variation of Thermal Barrier Coating Lifetime Characteristics with Thermal Durability Evaluation Methods pp.1544-1016, 2018, https://doi.org/10.1007/s11666-018-0784-1
  2. Growth Behavior of Thermally Grown Oxide Layer with Bond Coat Species in Thermal Barrier Coatings vol.55, pp.4, 2016, https://doi.org/10.4191/kcers.2018.55.4.05
  3. Experimental and Modeling Studies of Bond Coat Species Effect on Microstructure Evolution in EB-PVD Thermal Barrier Coatings in Cyclic Thermal Environments vol.9, pp.10, 2016, https://doi.org/10.3390/coatings9100626
  4. Behavior of yttria-stabilized zirconia (YSZ) during laser direct energy deposition of an Inconel 625-YSZ cermet vol.31, pp.None, 2016, https://doi.org/10.1016/j.addma.2019.100932
  5. 경사화 두께를 갖는 열차폐 코팅의 열적 내구성 평가 vol.21, pp.8, 2020, https://doi.org/10.5762/kais.2020.21.8.248
  6. Control of the Pore Structure of Plasma-Sprayed Thermal Barrier Coatings through the Addition of Unmelted Porous YSZ Particles vol.11, pp.3, 2016, https://doi.org/10.3390/coatings11030360
  7. Prediction of thermal fatigue life based on the microstructure of thermal barrier coating applied to single-crystal CMSX-4 considering stress ratio vol.47, pp.15, 2016, https://doi.org/10.1016/j.ceramint.2021.04.213