DOI QR코드

DOI QR Code

Tribological Behavior of Silicon Carbide Ceramics - A Review

  • Sharma, Sandan Kumar (Department of Metallurgical and Materials Engineering, Indian Institute of Technology (IIT) Roorkee) ;
  • Kumar, B. Venkata Manoj (Department of Metallurgical and Materials Engineering, Indian Institute of Technology (IIT) Roorkee) ;
  • Kim, Young-Wook (Functional Ceramics Laboratory, Department of Materials Science and Engineering, the University of Seoul)
  • Received : 2016.08.10
  • Accepted : 2016.09.09
  • Published : 2016.11.30

Abstract

A comprehensive review on sliding and solid particle erosion wear characteristics of silicon carbide (SiC) ceramics and SiC composites is provided. Sliding or erosion wear behavior of ceramics is dependent on various material characteristics as well as test parameters. Effects of microstructural and mechanical properties of SiC ceramics are particularly focused to understand tribological performance of SiC ceramics. Results obtained between varieties of pairs of SiC ceramics indicate complexity in understanding dominant mechanisms of material removal. Wear mechanisms during sliding are mainly divided in two groups as mechanical and tribochemical. In solid particle erosion conditions, wear mechanisms of SiC ceramics are explained by elastic-plastic deformation controlled micro-fracture on the surface followed by radial-lateral crack propagation beneath the plastic zone.

Keywords

References

  1. G. Roewer, U. Herzog, K. Trommer, E. Muller, and S. Fruhauf, "Silicon Carbide-A Survey of Synthetic Approaches, Properties and Applications," Struct. Bond., 101 59-135 (2002). https://doi.org/10.1007/3-540-45613-9_2
  2. B. V. M. Kumar, Y.-W. Kim, D. S. Lim, and W. S. Seo, "Influence of Small Amount of Sintering Additives on Unlubricated Sliding Wear Properties of SiC Ceramics," Ceram. Int., 37 [8] 3599-608 (2011). https://doi.org/10.1016/j.ceramint.2011.06.018
  3. N. P. Padture, "In Situ-Toughened Silicon Carbide," J. Am. Ceram. Soc., 77 519-23 (1994). https://doi.org/10.1111/j.1151-2916.1994.tb07024.x
  4. P. T. B. Shaffer, "A Review of the Structure of Silicon Carbide," Acta Cryst., B, 25 477-88 (1969). https://doi.org/10.1107/S0567740869002457
  5. H. P. Iwata, U. Lindefelt, S. Oberg, and P.R. Briddon, "Stacking Faults in Silicon Crabides," Phys. B, 340-342 165-70 (2003). https://doi.org/10.1016/j.physb.2003.09.045
  6. Y. M. Tairov and V. F. Tsvetkov, "Investigation of Growth Processes of Ingots of Silicon Carbide Single Crystals," J. Crys. Growth, 43 [2] 209-12 (1978). https://doi.org/10.1016/0022-0248(78)90169-0
  7. A. J. Van Bommel, J. E. Crombeen, and A. V. Tooren, "Leed and Auger Electron Observations of the SiC (0001) Surface," Surf. Sci., 48 463-72 (1975). https://doi.org/10.1016/0039-6028(75)90419-7
  8. A. Taylor and D. S. Laidler, "The Formation and Crystal Structure of Silicon Carbide," Br. J. Appl. Phys., 1 [7] 174-81 (1950). https://doi.org/10.1088/0508-3443/1/7/303
  9. W. Wesch, "Silicon Carbide: Synthesis and Processing," Nucl. Instrum. Meth. B, 116 305-21 (1996). https://doi.org/10.1016/0168-583X(96)00065-1
  10. V. A. Izhevskyi, L. A. Genova, J. C. Bressiani, and A. H. A. Bressiani, "Silicon Carbide. Structure, Properties and Processing," Ceramica, 46 4-13 (2000). https://doi.org/10.1590/S0366-69132000000100002
  11. T. Hase, "Boron Transport and Change of Lattice Parameter during Sintering of ${\beta}$-SiC," J. Am. Ceram. Soc., 63 [5-6] 349-50 (1980). https://doi.org/10.1111/j.1151-2916.1980.tb10741.x
  12. K. Negita, "Effective Sintering Aids for Silicon Carbide Ceramics: Reactivities of Silicon Carbide with Various Additives," J. Am. Ceram. Soc., 69 [12] C308-10 (1986).
  13. D. Sciti, S. Guicciardi, and A. Bellosi, "Effect of Annealing Treatment on Microstructure and Mechanical Properties of Liquid-Phase Sintered Silicon Carbide," J. Eur. Ceram. Soc., 21 621-32 (2001). https://doi.org/10.1016/S0955-2219(00)00254-5
  14. D. I. Cheong, J. Kim, and S. J. Kang, "Effect of Isothermal Annealing on the Microstructure and Mechanical Properties of SiC Ceramics Hot-Pressed with $Y_2O_3$ and $Al_2O_3$ Additions," J. Eur. Ceram. Soc., 22 1321-27 (2002). https://doi.org/10.1016/S0955-2219(01)00454-X
  15. D. Sciti and A. Bellosi, "Effects of Additives on Densification, Microstructure and Properties of Liquid-Phase Sintered Silicon Carbide" J. Mater. Sci., 35 3849-55 (2000). https://doi.org/10.1023/A:1004881430804
  16. G. Rixecker, I. Wiedmann, A. Rosinus, and F. Aldinger, "High-Temperature Effect in the Fracture Mechanical Behaviour of Silicon Carbide Liquid-Phase Sintered with $AlN-Y_2O_3$ Additives," J. Eur. Ceram. Soc., 21 1013-19 (2001). https://doi.org/10.1016/S0955-2219(00)00317-4
  17. R. R. Lee and W. C. Wei, "Fabrication, Microstructure, and Properties of SiC-AlN Ceramic Alloys," Ceram. Eng. Sci. Proc., 11 [7-8] 1094-121 (1990). https://doi.org/10.1002/9780470313008.ch39
  18. S. G. Lee, Y.-W. Kim, and M. Mitomo, "Relationship between Microstructure and Fracture Toughness of Toughened Silicon Carbide Ceramics," J. Am. Ceram. Soc., 84 1347-53 (2001).
  19. H. J. Choi, J. G. Lee, and Y.-W. Kim, "Oxidation Behavior of Liquid-Phase Sintered Silicon Carbide with Aluminum Nitride and Rare-Earth Oxides ($Re_2O_3$, where Re =Y, Er, Yb)," J. Am. Ceram. Soc., 85 [9] 2281-86 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00448.x
  20. Y. Zhou, K. Hirao, Y. Yamauchi, and S. Kanzaki, "Tailoring the Mechanical Properties of Silicon Carbide Ceramics by Modification of the Intergranular Phase Chemistry and Microstructure," J. Eur. Ceram. Soc., 22 2689-96 (2002). https://doi.org/10.1016/S0955-2219(02)00134-6
  21. D. Chen, X. F. Zhang, and R. O. Ritchie, "Effects of Grain-Boundary Structure on the Strength, Toughness, and Cyclic-Fatigue Properties of a Monolithic Silicon Carbide," J. Am. Ceram. Soc., 83 2079-81 (2000).
  22. R. Yuan, J. J. Kruzic, X. F. Zhang, L. C. De Jonghe, and R. O. Ritchie, "Ambient to High Temperature Fracture Toughness and Cyclic Fatigue Behavior in Al Containing Silicon Carbide Ceramics," Acta Mater., 51 6477-91 (2003). https://doi.org/10.1016/j.actamat.2003.08.038
  23. P. F. Becher, "Microstructural Design of Toughened Ceramics," J. Am. Ceram. Soc., 74 255-269 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb06872.x
  24. H. J. Choi, Y. -W. Kim, M. Mitomo, T. Nishimura, J. H. Lee, and D. Y. Kim, "Intergranular Glassy Phase Free SiC Ceramics Retains Strength at 1500$^{\circ}C$," Scripta Mater., 50 1203-7 (2004). https://doi.org/10.1016/j.scriptamat.2004.02.008
  25. Y. -W. Kim, S. H. Lee, T. Nishumura, and M. Mitomo, "Heat-Resistant Silicon Carbide with Aluminum Nitride and Scandium Oxide," Acta Mater., 53 4701-8 (2005). https://doi.org/10.1016/j.actamat.2005.07.002
  26. Y.-W. Kim, J. H. Lee, and D. Y. Kim, "Effect of Sintering Additive Composition on Grain Boundary Structure in Liquid-Phase-Sintered Silicon Carbide," Mater. Sci. Forum, 558-559 897-902 (2007).
  27. B. V. M. Kumar, M. H. Roh, Y.-W. Kim, W. Kim, S. W. Park, and W. S. Seo, "Effect of Additive Composition on Microstructure and Mechanical Properties of SiC Ceramics Sintered with Small Amount of $RE_2O_3$ (RE: Sc, Lu, Y) and AlN," J. Mater. Sci., 44 5939-5943 (2009). https://doi.org/10.1007/s10853-009-3818-8
  28. Y.-W. Kim, Y. S. Chun, T. Nishumura, M. Mitomo, and Y. H. Lee, "High Temperature Strength of Silicon Carbide Ceramics Sintered with Rare-Earth Oxide and Aluminum Nitride," Acta Mater., 55 727-36 (2007). https://doi.org/10.1016/j.actamat.2006.08.059
  29. N. P. Padture, "In Situ-Toughened Silicon Carbide," J. Am. Ceram. Soc., 77 519-23 (1994). https://doi.org/10.1111/j.1151-2916.1994.tb07024.x
  30. G. Rixecker, K. Biswas, A. Rosinus, S. Sharma, I. Wiedmann, and F. Aldinger, "Fracture Properties of SiC Ceramics with Oxynitride Additives," J. Eur. Ceram. Soc., 22 2669-75 (2002). https://doi.org/10.1016/S0955-2219(02)00132-2
  31. K. Strecker and M. J. Hoffmann, "Effect of AlN-Content on the Microstructure and Fracture Toughness of Hot-Pressed a Heat-Treated LPS-SiC Ceramics," J. Eur. Ceram. Soc., 25 801-7 (2005). https://doi.org/10.1016/j.jeurceramsoc.2004.01.024
  32. M. Herrmann, G. Standke, S. Hohn, G. Himpel, and T. Gestrich, "High-Temperature Corrosion of Silicon Carbide Ceramics by Coal Ashes," Ceram. Int., 40 1471-79 (2014). https://doi.org/10.1016/j.ceramint.2013.07.031
  33. Y. -W. Kim, K. Y. Lim, and W. S. Seo, "Microstructure and Thermal Conductivity of Silicon Carbide with Yttria and Scandia," J. Am. Ceram. Soc., 97 923-28 (2014). https://doi.org/10.1111/jace.12737
  34. K. Y. Lim, Y.-W. Kim, and K. J. Kim, "Mechanical Properties of Electrically Conductive Silicon Carbide Ceramics," Ceram. Int., 40 10577-82 (2014). https://doi.org/10.1016/j.ceramint.2014.03.036
  35. S. Grasso, T. Saunders, H. Porwal, and M. Reece, "Ultra-High Temperature Spark Plasma Sintering of ${\alpha}-SiC$," Ceram. Int., 41 225-30 (2015). https://doi.org/10.1016/j.ceramint.2014.08.062
  36. S. Lafon-Placette, K. Delbe, J. Denape, and M. Ferrato, "Tribological Characterization of Silicon Carbide and Carbon Materials," J. Eur. Ceram. Soc., 35 1147-59 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.10.038
  37. S. M. Hsu and M. Sheng, "Wear Prediction of Ceramics," Wear, 256 867-78 (2004). https://doi.org/10.1016/j.wear.2003.11.002
  38. D. Chen, X. F. Zhang, and R. O. Ritchie, Effects of Grain-Boundary Structure on the Strength, Toughness, and Cyclic-Fatigue Properties of a Monolithic Silicon Carbide," J. Am. Ceram. Soc., 83 2079-81 (2000).
  39. X. Dong, S. Jahanmir, and L. K. Ives, "Wear Transition Diagram for Silicon Carbide," Tribo. Int., 28 559-72 (1995). https://doi.org/10.1016/0301-679X(96)85544-7
  40. D. C. Cranmer, "Friction and Wear Properties of Monolithic Silicon-Based Ceramics," J. Mater. Sci., 20 2029-37 (1985). https://doi.org/10.1007/BF01112286
  41. K. H. Z. Gahr, R. Blattner, D. H. Hwang, and K. Pohlmann, "Micro- and Macro-Tribological Properties of SiC Ceramics in Sliding Contact," Wear, 250 299-310 (2001). https://doi.org/10.1016/S0043-1648(01)00595-6
  42. V. S. R. Murthy, H. Kobayashi, S. Tsurekawa, N. Tamari, T. Watanabe, and K. Kato, "Influence of Humidity and Hoping Elements on the Friction and Wear of SiC in Unlubricated Sliding," Tribo. Int., 37 353-64 (2004). https://doi.org/10.1016/j.triboint.2003.11.002
  43. Y. Wang and S. M. Hsu, "Wear and Wear Transition Mechanisms of Ceramics," Wear 195 112-22 (1996). https://doi.org/10.1016/0043-1648(95)06800-7
  44. X. F. Zhang, G. Y. Lee, D. Chen, R. O. Ritchie, and L. C. D. Jonghe, "Abrasive Wear Behavior of Heat-Treated ABC-Silicon Carbide," J. Am. Ceram. Soc., 86 1370-78 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03478.x
  45. P. Andersson and A. Blomberg, "Instability in the Tribochemical Wear of Silicon Carbide in Unlubricated Sliding Contacts," Wear, 174 1-7 (1994). https://doi.org/10.1016/0043-1648(94)90080-9
  46. O. O. Adewoye and T. F. Page, "Frictional Deformation and Fracture in Polycrystalline SiC and $Si_3N_4$," Wear, 70 37-5 (1981). https://doi.org/10.1016/0043-1648(81)90270-2
  47. S. J. Cho, C. D. Um, and S. S. Kim, "Wear and Wear Transition in Silicon Carbide Ceramics During Sliding," J. Am. Ceram. Soc., 79 1247-51 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08579.x
  48. O. B. Lopez, A. L. Ortiz, F. Guiberteau, and N. P. Padture, "Sliding-Wear-Resistant Liquid-Phase-Sintered SiC Processed Using ${\alpha}-SiC $ Starting Powders," J. Am. Ceram. Soc., 90 [2] 541-45 (2007). https://doi.org/10.1111/j.1551-2916.2006.01421.x
  49. O. B. Lopez, A. L. Ortiz, F. Guiberteau, and N. P. Padture, "Microstructural Design of Sliding-Wear-Resistant Liquid-Phase-Sintered SiC: An Overview," J. Eur. Ceram. Soc., 27 3351-57 (2007). https://doi.org/10.1016/j.jeurceramsoc.2007.02.190
  50. O. B. Lopez, A. L. Ortiz, F. Guiberteau, and N. P. Padture, "Effect of Microstructure on Sliding-Wear Properties of Liquid-Phase-Sintered ${\alpha}-SiC $," J. Am. Ceram. Soc., 88 [8] 2159-2163 (2005). https://doi.org/10.1111/j.1551-2916.2005.00394.x
  51. O. B. Lopez, A. L. Ortiz, F. Guiberteau, and N. P. Padture, "Improved Sliding-Wear Resistance in In-situ Toughened Silicon Carbide," J. Am. Ceram. Soc., 88 [12] 3531-34 (2005). https://doi.org/10.1111/j.1551-2916.2005.00628.x
  52. O. B. Lopez, A. L. Ortiz, F. Guiberteau, and N. P. Padture, "Effect of the Nature of the Intergranular Phase on Sliding-Wear Resistance of Liquid-Phase-Sintered ${\alpha}-SiC $," Scripta Mater., 57 [6] 505-8 (2007). https://doi.org/10.1016/j.scriptamat.2007.05.021
  53. E. Ciudad, O. B. Lopez, F. Rodriguez-Rojas, A. L. Ortiz, and F. Guiberteau, "Effect of Intergranular Phase Chemistry on the Sliding-Wear Resistance of Pressureless Liquid-Phase-Sintered ${\alpha}-SiC $," J. Eur. Ceram. Soc., 32 [2] 511-16 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.09.011
  54. A. L. Ortiz, O. B. Lopez, M. Z. Quadir, and F. Guiberteau, "A Route for the Pressureless Liquid-Phase Sintering of SiC with Low Additive Content for Improved Sliding-Wear Resistance," J. Eur. Ceram. Soc., 32 [4] 965-73 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.10.052
  55. R. S. Gates and S. M. Hsu, "Tribochemistry between Water and $Si_3N_4$ and SiC: Induction Time Analysis," Tribol. Lett., 17 [3] 399-407 (2004). https://doi.org/10.1023/B:TRIL.0000044488.84437.68
  56. S. M. Hsu and M. C. Shen, "Ceramic Wear Maps," Wear, 200 [1-2] 154-75 (1996). https://doi.org/10.1016/S0043-1648(96)07326-7
  57. K. Kato and K. Adachi, "Wear of Advanced Ceramics," Wear, 253 [11-12] 1097-104 (2002). https://doi.org/10.1016/S0043-1648(02)00240-5
  58. L. Jordi, C. Iliev, and T. E. Fischer, "Lubrication of Silicon Nitride and Silicon Carbide by Water: Running in, Wear and Operation of Sliding Bearings," Tribol. Lett., 17 [3] 367-76 (2004). https://doi.org/10.1023/B:TRIL.0000044485.77019.fb
  59. A. Udayakumar, M. Balasubramanian, H. B. Gopala, P. Sampathkumaran, S. Seetharamu, R. Babu, D. Sathiyamoorthy, and G. R. Reddy, "Influence of the Type of Interface on the Tribological Characteristics of ICVI Generated $SiC_f/SiC $ Composites," Wear, 271 859-65 (2011). https://doi.org/10.1016/j.wear.2011.03.029
  60. U. Dulias and K. H. Z. Gahr, "Investigation of $Al_2O_3$- and SSiC-Ceramic Under Lubricated, Reciprocating Sliding Contact and Cavitation Erosion," Mater Sci. Eng. Technol., 36 [3-4] 140-47 (2005).
  61. S. K. Sharma, B. V. M. Kumar, K. Y. Lim, Y.-W. Kim, and S. K. Nath, "Erosion Behavior of SiC-WC Composites," Ceram. Int., 40 6829-39 (2014). https://doi.org/10.1016/j.ceramint.2013.11.146
  62. J. J. Kim and S.K. Park, "Solid Particle Erosion of SiC and SiC-$TiB_2$ Composite Hot-Pressed with $Y_2O_3$," Wear, 222 [2] 114-19 (1998). https://doi.org/10.1016/S0043-1648(98)00293-2
  63. X. Li, H. Ding, Z. Huang, M. Fang, B. Liu, Y. Liu, X. Wu, and S. Chen, "Solid Particle Erosion-Wear Behavior of SiC-$Si_3N_4$ Composite Ceramic at Elevated Temperature," Ceram. Int., 40 16201-7 (2014). https://doi.org/10.1016/j.ceramint.2014.07.055
  64. B. Wang and A.V. Levy, "Erosion Behavior of SiC Fiber-SiC Matrix Composites," Wear, 138 125-36 (1990). https://doi.org/10.1016/0043-1648(90)90172-7
  65. D. F. Wang, J. H. She, and Z. Y. Ma, "Effect of Microstructure on Erosive Wear Behavior of SiC Ceramics," Wear, 180 35-41 (1995). https://doi.org/10.1016/0043-1648(94)06535-7
  66. J. L. Routbort and A. P. L. Turner, "The Erosion Rate of Reaction-Bonded SiC Containing Various Amounts of Free Silicon," Wear, 84 381-85 (1983). https://doi.org/10.1016/0043-1648(83)90278-8
  67. J. L. Routbort, R. O. Scattergood, and A. P. L. Turner, "The Erosion of Reaction-Bonded SiC," Wear, 59 363-75 (1980). https://doi.org/10.1016/0043-1648(80)90194-5
  68. B. Basu and M. Kalin, "Tribology of Ceramics and Composites," pp. 70-100 in Wear Mechanisms, John Wiley & Sons, Inc., New Jersey, 2011.
  69. S. J. Cho, B. J. Hockey, B. R. Lawn, and S. J. Bennison, ''Grain-Size and R-Curve Effects in the Abrasive Wear of Alumina,'' J. Am. Ceram. Soc., 72 [7] 1249-52 (1989). https://doi.org/10.1111/j.1151-2916.1989.tb09718.x
  70. S. J. Cho, C. D. Um, and S. S. Kim, ''Wear and Wear Transition Mechanism in Silicon Carbide during Sliding,'' J. Am. Ceram. Soc., 78 [4] 1076-78 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08440.x
  71. J. D. O. Barceinas-Sanchez and W. M. Rainforth, ''On the Role of Plastic Deformation during the Mild Wear of Alumina,'' Acta Mater., 46 [18] 6475-83 (1998). https://doi.org/10.1016/S1359-6454(98)00292-4
  72. V. S. R. Murthy, H. Kobayashi, N. Tamari, S. Tsurekawa, T. Watanabe, and K. Kato, "Effect of Doping Elements on the Friction and Wear Properties of SiC in Unlubricated Sliding Condition," Wear, 257 89-96 (2004). https://doi.org/10.1016/j.wear.2003.10.016
  73. R. K. Iier, The Chemistry of Silica; pp. 40-60, Wiley Inc., New York, 1979.
  74. E. Ciudad, O. B. Lopez, A. L. Ortiz, and F. Guiberteau, "Microstructural Effects on the Sliding-Wear Resistance of Pressureless Liquid-Phase-Sintered SiC Under Diesel Fuel," J. Eur. Ceram. Soc., 33 [4] 879-85 (2013). https://doi.org/10.1016/j.jeurceramsoc.2012.10.032
  75. Y. Zhou, K. Hirao, Y. Yamauchi, and S. Kanzaki, "Tribological Properties of Silicon Carbide and Silicon Carbide-Graphite Composite Ceramics in Sliding Contact," J. Am. Ceram. Soc., 86 [6] 991-1002 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03407.x
  76. S. K. Sharma, B. V. M. Kumar, and Y.-W. Kim, "Effect of WC Addition on Sliding Wear Behavior of SiC Ceramics," Ceram. Int., 41 3427-37 (2015). https://doi.org/10.1016/j.ceramint.2014.10.144
  77. X. Guo, H. Yang, L. Zhang, and X. Zhu, "Sintering Behavior, Microstructure and Mechanical Properties of Silicon Carbide Ceramics Containing Different Nano-TiN Additive," Ceram. Int., 36 161-65 (2010). https://doi.org/10.1016/j.ceramint.2009.07.013
  78. H. J. Yeom, Y.-W. Kim, and K. J. Kim, "Electrical, Thermal and Mechanical Properties of Silicon Carbide-Silicon Nitride Composites Sintered with Yttria and Scandia," J. Eur. Ceram. Soc., 35 77-86 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.08.011
  79. J. Llorente, B. R. Manso, P. Miranzo, and M. Belmonte, "Tribological Performance under Dry Sliding Conditions of Graphene/Silicon Carbide Composites," J. Eur. Ceram. Soc., 36 429-35 (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.09.040
  80. X. Yang, X. Liu, L. Wang, H. Zhang, X. Yao, and Z. Huang, "R-Curve Analysis of Solid-Phase-Sintered and Liquid-Phase-Sintered Silicon Carbide Ceramics by Indentation Fracture and Indentation-Strength-in-Bending Methods," Ceram. Int., 42 4011-18 (2016). https://doi.org/10.1016/j.ceramint.2015.11.070
  81. D. B. Marshall, B. R. Lawn, and A. G. Evans, "Elastic/Plastic Indentation Damage in Ceramics: the Lateral Crack System," J. Am. Ceram. Soc., 65 [11] 561-66 (1982) https://doi.org/10.1111/j.1151-2916.1982.tb10782.x
  82. B. R. Lawn, N. P. Padture, F. Guiberteau, and H. Cai, "A Model for Microcrack Initiation and Propagation Beneath Hertzian Contacts in Polycrystalline Ceramics," Acta Metall. Mater., 42 [5] 1683-93 (1994). https://doi.org/10.1016/0956-7151(94)90378-6
  83. A. Tewari, B. Basu, and R. K. Bordia, "Model for Fretting Wear of Brittle Ceramics," Acta Mater., 57 2080-87 (2009). https://doi.org/10.1016/j.actamat.2009.01.013
  84. S. Gupta, S. K. Sharma, B. V. M. Kumar, and Y.-W. Kim, "Tribological Characteristics of SiC Ceramics Sintered with a Small Amount of Yttria," Ceram. Int., 41 14780-89 (2015). https://doi.org/10.1016/j.ceramint.2015.07.210
  85. J. F. Li, J. Q. Huang, S. H. Tan, Z. M. Cheng, and C. X. Ding, "Tribological Properties of Silicon Carbide under Water-Lubricated Sliding," Wear, 218 167-71 (1998). https://doi.org/10.1016/S0043-1648(98)00217-8
  86. A. Kovalcikova, P. Kurek, J. Balko, J. Dusza, P. Sajgalik, and M. Mihalikova, "Effect of the Counterpart Material on Wear Characteristics of Silicon Carbide Ceramics," Int. J. Refract. Met Hard Mater., 44 12-8 (2014). https://doi.org/10.1016/j.ijrmhm.2014.01.006
  87. G. Amirthan and M. Balasubramanian, "Reciprocating Sliding Wear Studies on Si/SiC Ceramic Composites," Wear, 271 1039-49 (2011). https://doi.org/10.1016/j.wear.2011.04.006
  88. V. M. Candelario, O. B. Lopez, F. Guiberteau, R. Morenob, and A. L. Ortiz, "Sliding- Wear Resistance of Liquid-Phase-Sintered SiC Containing Graphite Nanodispersoids," J. Eur. Ceram. Soc., 34 2597-602 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.02.033
  89. J. Takadoum, Z. Zsiga, and C. Roques-Carmes, "Wear Mechanism of Silicon Carbide: New Observations," Wear, 174 239-42 (1994). https://doi.org/10.1016/0043-1648(94)90107-4
  90. L. Micele, G. Palombarini, S. Guicciardi, and L. Silvestroni, "Tribological Behaviour and Wear Resistance of a SiC-$MoSi_2$ Composite Dry Sliding against $Al_2O_3$," Wear, 269 368-75 (2010). https://doi.org/10.1016/j.wear.2010.04.021
  91. R. Wasche, D. Klaffke, and T. Troczynski, "Tribological Performance of SiC and $TiB_2$ against SiC and $Al_2O_3$ at Low Sliding Speeds," Wear, 256 695-704 (2004). https://doi.org/10.1016/S0043-1648(03)00444-7
  92. K. Kato, "Tribology of Ceramics," Wear, 136 117-33 (1990). https://doi.org/10.1016/0043-1648(90)90075-L
  93. S. Hotta and Y. Mizutani, "Effect of Water and Organic Solvents on the Friction of SiC," pp. 1-4 in Proceedings, 32nd JSLE, Japanese Society of Lubrication Engineers Conference, Tokyo, Japan (1988).
  94. X. F. Chen, X. G. Xu, X. B. Hu, J. Li, S. Z. Jiang, L. N. Ning, Y. M. Wang, and M. H. Jiang, "Anisotropy of Chemical Mechanical Polishing in Silicon Carbide Substrates," Mater. Sci. Eng. B, 142 28-30 (2007). https://doi.org/10.1016/j.mseb.2007.06.015
  95. H. Y. Liu and M. E. Fine, "Modeling of Grain-Size Dependent Microfracture-Controlled Sliding Wear in Polycrystalline Alumina," J. Am. Ceram. Soc., 76 [9] 2393-96 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb07786.x
  96. S. J. Cho, H. Moon, B. J. Hockey, and S. M. Hsu, "The Transition from Mild to Severe Wear in Alumina During Sliding," Acta Metall., 40 [1] 185-92 (1992). https://doi.org/10.1016/0956-7151(92)90212-W
  97. X. Dong and S. Jahanmir, "Wear Transition Diagram for Silicon Nitride," Wear, 165 169-80 (1993). https://doi.org/10.1016/0043-1648(93)90332-G
  98. W. M. Rainforth, "The Wear Behavior of Oxide Ceramics-A Review," J. Mater. Sci., 39 [2] 6705-21 (2004). https://doi.org/10.1023/B:JMSC.0000045601.49480.79
  99. X. Wang, N. P. Padture, H. Tanaka, and A. L. Ortiz, "Wear-Resistant Ultra-Fine-Grained Ceramics," Acta Mater., 53 [2] 271-77 (2005). https://doi.org/10.1016/j.actamat.2004.09.020
  100. B. Frisch, W. R. Thiele, R. Drumm, and B. Muennich, "On the Oxidation Mechanism of Silicon Carbide in the 300$^{\circ}C$ to 1300$^{\circ}C$ Temperature Range," Ceram. Forum Int., 65 [8-9] 277-84 (1988).
  101. S. C. Singhal, "Thermodynamical Analysis of the High-Temperature Stability of Silicon Nitride and Silicon Carbide," Ceram. Int., 2 [3] 123-30 (1976). https://doi.org/10.1016/0390-5519(76)90022-3
  102. P. C. Kong and E. Pfender, "Formation of Ultrafine ${\beta}$-Silicon Crabide Powders in an Agron Thermal Plasma Jet," Langmuir, 3 [2] 259-65 (1987). https://doi.org/10.1021/la00074a020
  103. Z. Zhu, V. Muratov, and T. E. Fischer, "Tribochemical Polishing of Silicon Carbide in Oxidant Solution," Wear, 225-229 848-56 (1999). https://doi.org/10.1016/S0043-1648(98)00392-5
  104. L. C. Erickson, A. Blomberg, S. Hogmark, and J. Bratthall, "Tribological Characterization of Alumina and Silicon Carbide under Lubricated Sliding," Tribology Int., 26 [2] 83-92 (1993). https://doi.org/10.1016/0301-679X(93)90016-T
  105. H. Tomizawa and T. E. Fischer, "Friction and Wear of Silicon Nitride and Silicon Carbide in Water: Hydrodynamic Lubrication at Low Sliding Speed Obtained by Tribochemical Wear," ASLE Trans., 30 [1] 41-6 (1987). https://doi.org/10.1080/05698198708981728
  106. J. K. Lancaster, "A Review of the Influence of Environmental Humidity and Water on Friction, Lubrication and Wear," Tribology Int., 23 [6] 371-89 (1990). https://doi.org/10.1016/0301-679X(90)90053-R
  107. S. Sasaki, "The Effects of Water on Friction and Wear of Ceramics," J. Jpn. Soc. Lubr. Eng., 10 10-26 (1988).
  108. R. Wasche and D. Klaffke, "Ceramic Particulate Composites in the System SiC-TiC-$TiB_2$ Sliding against SiC and $Al_2O_3$ Under Water," Tribology Int., 32 197-206 (1999). https://doi.org/10.1016/S0301-679X(99)00033-X
  109. E. Medvedovski, "Ballistic Performance of Armour Ceramics: Part 1. Influence of Design and Structure," Ceram. Int., 36 2103-15 (2010). https://doi.org/10.1016/j.ceramint.2010.05.021
  110. A. G. Evans and T. R. Wilshaw, "Dynamic Solid Particle Damage in Brittle Materials, An Appraisal," J. Mater. Sci. 12 97-116 (1977). https://doi.org/10.1007/BF00738475
  111. J. G. Chacon-Nava, F. H. Stott, S. D. de la Torre, and A. Martinez-Villafane, "Erosion of $Al_2O_3$ and SiC at Low Impact Velocities," Mater. Lett., 55 269-73 (2002). https://doi.org/10.1016/S0167-577X(01)00659-0
  112. J. L. Routbort and R. O. Scattergood, "Anomalous Solid-Particle Erosion Rate of Hot Pressed Silicon Carbide," J. Am. Ceram. Soc., 63 593-95 (1980). https://doi.org/10.1111/j.1151-2916.1980.tb10771.x
  113. S. M. Wiederhorn and B. J. Hockey, "Effect of Material Parameters on the Erosion Resistance of Brittle Materials," J. Mater. Sci., 18 766-80 (1983). https://doi.org/10.1007/BF00745575
  114. J. L. Routbort and H. Matzke, "On the Correlation Between Erosion and Fracture Parameters in SiC Ceramics," J. Mater. Sci., 18 1491-96 (1983). https://doi.org/10.1007/BF01111969
  115. D. Jianxin, L. Lili, and D. Mingwei, "Erosion Wear Behaviours of SiC/(W,Ti)C Laminated Ceramic Nozzles in Dry Sand Blasting Processes," Mater. Sci. Eng. A, 444 120-29 (2007). https://doi.org/10.1016/j.msea.2006.08.090
  116. A. F. Colclough and J. A. Yeomans, "Hard Particle Erosion of Silicon Carbide and Silicon Carbide-Titanium Diboride from Room Temperature to 1000$^{\circ}C$," Wear, 209 229-36 (1997). https://doi.org/10.1016/S0043-1648(97)80015-4
  117. I. M. Hutchings, "Tribology: Friction and Wear of Engineering Materials; pp. 352, Edward Arnold, London, 1992.
  118. J. F. Bell, and P. S. Rogers, "Laboratory Scale Erosion Testing of a Wear Resistant Glass-Ceramic," Mater. Sci. Tech., 3 807-13 (1987). https://doi.org/10.1179/mst.1987.3.10.807
  119. P. Gautier and K. Kato, "Wear Mechanisms of Silicon Nitride Partially Stabilized Zirconia and Alumina in Unlubricated Sliding against Steel," Wear, 162-164 305-13 (1993). https://doi.org/10.1016/0043-1648(93)90513-L
  120. D. K. Shetty, I. G. Wright, and A. H. Clauer, "Coal Slurry Erosion of Reaction-Bonded SiC," Wear, 79 275-79 (1982). https://doi.org/10.1016/0043-1648(82)90175-2
  121. B. Q. Wang and A. V. Levy, "Erosion Behavior of SiC Fiber-SiC Matrix Composites," Wear, 138 125-36 (1990). https://doi.org/10.1016/0043-1648(90)90172-7
  122. I. Finnie, J. Wolak, and Y. H. Kabil, "Erosion of Metals by Solid Particles," J. Mater., 2 [3] 682-700 (1967).
  123. G. Amirthana, A. Udaya Kumar, V.V. Bhanu Prasad, and M. Balasubramanian, "Solid Particle Erosion Studies on Biomorphic Si/SiC Ceramic Composites," Wear, 268 145-52 (2010). https://doi.org/10.1016/j.wear.2009.07.007
  124. A. R. de A. Lopez, J. M. Fernandez, F. M. V. Feria, T. S . Orlova, K. C. Goretta, F. G. Mora, Nan Chen, and J. L. Routbort, "Erosion and Strength Degradation of Biomorphic SiC," J. Eur. Ceram. Soc., 24 861-70 (2004). https://doi.org/10.1016/S0955-2219(03)00321-2
  125. B. J. Hockey, S. M. Wiederhorn, and H. Johnson, "Erosion of Brittle Materials by Solid Particle Impact," pp. 379-402 in Fracture Mechanics of Ceramics Vol. 3, Ed. by R. C. Bradt, D. P. H. Hasselman, and F. F. Lange, Plenum Press, New York, 1978.
  126. B. J. Hockey and B. R. Lawn, "Electron Microscopy of Microcracking about Indentations in Aluminium Oxide and Silicon Carbide," J. Mater. Sci., 10 [8] 1275-84 (1975). https://doi.org/10.1007/BF00540816
  127. S. M. Wiederhorn and B. J. Hockey, "Effect of Material Parameters on the Erosion Resistance of Brittle Materials," J. Mater. Sci., 18 [3] 766-80 (1983). https://doi.org/10.1007/BF00745575
  128. B. R. Lawn, B. J. Hockey, and S. M. Wiederhorn, "Atomically Sharp Cracks in Brittle Solids: An Electron Microscopy Study," J. Mater. Sci., 15 1207-23 (1980). https://doi.org/10.1007/BF00551810
  129. D. C. Evans and J. K. Lancaster, "The Wear of Polymers," pp. 85-139 in Treatise on Materials Science and Technology: Wear, Vol. 13, Academic Press, New York and London, 1979.
  130. D. B. Marshall, B. R. Lawn, and A. G. Evans, "Elastic/Plastic Indentation Damage in Ceramics: The Lateral Crack System," J. Am. Ceram. Soc., 65 [11] 561-66 (1982). https://doi.org/10.1111/j.1151-2916.1982.tb10782.x
  131. A. G. Evans, M. E. Gulden, and M. Rosenblatt. "Impact Damage in Brittle Materials in the Elastic-Plastic Response Regime," Proc. of the Royal Society of London, 361 343-65 (1978).
  132. D. Wang and Z. Mao, "Microscopic Observations of Wear of Heat-Resistant Ceramics," Wear, 167 [1] 87-9 (1993). https://doi.org/10.1016/0043-1648(93)90059-U
  133. M. M. Chaudhri and S. M. Walley, "Damage to Glass Surfaces by the Impact of Small Glass and Steel Spheres," Phil. Mag. A, 37 [2] 153-65 (1978). https://doi.org/10.1080/01418617808235430
  134. C. G. Knight, M. V. Swain, and M. M. Chaudhri, "Impact of Small Steel Spheres on Glass Surfaces," J. Mater. Sci., 12 [8] 1573-86 (1977). https://doi.org/10.1007/BF00542808
  135. B. R. Lawn and D. B. Marshall, "Indentation Fracture and Strength Degradation in Ceramics," pp. 205-29 in Fracture Mechanics of Ceramics, Vol. 3, Ed. by R. C. Bradt, D. P. H. Hasselman, and F. F. Lange, Plenum Press, New York, 1978.
  136. M. M. Chaudhri, and P. A. Brophy, "Single Particle Impact Damage of Fused Silica." J. Mater. Sci., 15 [2] 345-52 (1980). https://doi.org/10.1007/PL00020067
  137. M. S. Suh, T. Hinoki, and A. Kohyama, "Erosive Wear Mechanism of New SiC/SiC Composites by Solid Particles," Tribol. Lett., 41 503-13 (2011). https://doi.org/10.1007/s11249-010-9658-5
  138. S. Gochnour, J. D. Bright, D. K. Shett, "Solid Particle Erosion of SiC-$Al_2OC$ Ceramics," J. Mater. Sci., 25 3229-35 (1990). https://doi.org/10.1007/BF00587679
  139. S. Wada and N. Watanabe, "Solid Particle Erosion of Brittle Materials. III. The Interaction with Material Properties of Target and That of Impingement Particle on Erosive Wear Mechanism," J. Ceram. Soc. Jpn., 95 [6] 573-78 (1987).
  140. J. J. Kim and S. K. Park, "Solid-Particle Erosion of Hot-Pressed Silicon Carbide and SiC-$TiB_2$ Composite," J. Mater. Sci. Lett., 16 821-23 (1997). https://doi.org/10.1023/A:1018582509390
  141. Z. H. Huang, J. L. Sun, J. X. Wang, and Y. R. Hong, "${\alpha}-Sialon-Al_2O_3-SiC$ Composite Refractories," Key Eng. Mater., 224 275-80 (2012).

Cited by

  1. Tribology of WC reinforced SiC ceramics: Influence of counterbody pp.2223-7704, 2018, https://doi.org/10.1007/s40544-017-0194-2
  2. Dry Sliding Wear Behaviour of Plasma Sprayed Flyash-Al2O3 and Flyash-SiC Coatings on the Al6061 Aluminum Alloy pp.1876-9918, 2018, https://doi.org/10.1007/s12633-018-9978-x
  3. Microstructure and Tribological Performance of Mesocarbon Microbead-Silicon Carbide Composites vol.12, pp.19, 2016, https://doi.org/10.3390/ma12193127
  4. Accelerated testing of the friction pairs of mechanical seals made of composite material of the TiC - SiC system vol.87, pp.1, 2016, https://doi.org/10.26896/1028-6861-2021-87-1-52-60
  5. Wear Properties of Nitride-Bonded Silicon Carbide under the Action of an Abrasive Soil Mass vol.14, pp.8, 2016, https://doi.org/10.3390/ma14082043