DOI QR코드

DOI QR Code

수중 실험 데이터 기반 터보 부호 성능 분석

Performance analysis of turbo codes based on underwater experimental data

  • Sung, Ha-Hyun (Department of Marine Engineering, Korea Maritime and Ocean University) ;
  • Jung, Ji-Won (Division of Radio Frequency Engineering, Korea Maritime and Ocean University)
  • 투고 : 2015.04.07
  • 심사 : 2015.12.07
  • 발행 : 2016.01.31

초록

수중에서의 음향 통신의 성능은 신호의 다중경로 전달과정에 의해 발생하는 지역 확산 현상으로 인하여 인접 심볼간 간섭의 영향을 받는다. 이러한 다중경로의 영향으로 신호는 왜곡되고 원활한 수신을 방해하게 된다. 이러한 다중경로 환경에서 본 논문에서는 수신 신호의 성능을 향상시키고자 수중통신에 적합한 반복부호를 설정하였다. 적용 가능한 반복부호로는 터보 부호와 BCJR 기반의 컨볼루션 부호가 있으며, 동일한 부호화율 및 비슷한 부호어 길이에서 터보부호의 성능을 비교 분석하였다. 본 논문에서는 경북 문경시 경천호에서의 실제 수중 실험을 통하여 두 가지 방식의 성능을 분석하였다. 송수신 거리가 400m 그리고 데이터 속도를 1Kbps에서 측정된 실제 데이터를 이용하였다. 실험 결과 컨볼루션 부호 기반의 BCJR 복호기는 81%의 성공률, 터보 부호 기반의 터보 등화기는 93%의 성공률을 나타내는 것으로 보아 터보 부호 기반의 터보 등화기가 성능이 약간 우수함을 알 수 있다.

The performance of underwater acoustic communication systems is sensitive to inter-symbol interference caused by delay spread developed from multipath signal propagation. The multipath nature of underwater channels causes signal distortion and error floor. In order to improve the performance, it is necessary to employ an iterative coding scheme. Of the various iterative coding schemes, turbo code and convolutional code based on the BCJR algorithm have recently dominated this application. In this study, the performance of iterative codes based on turbo equalizers with equivalent coding rates and similar code word lengths were analyzed. Underwater acoustic communication system experiments using these two coding techniques were conducted on Kyeong-chun Lake in Munkyeong City. The distance between the transmitter and receiver was 400 m, and the data transfer rate was 1 Kbps. The experimental results revealed that the performance of turbo codes is better for channeling than that of convolutional codes that use a BCJR decoding algorithm.

키워드

참고문헌

  1. M. Stojanovic, J. Catipovic, and J. Proakis, "Phase coherent digital communications for underwater acoustic channels," IEEE Journal of the Ocean Engineering, vol. 19, no. 1, pp. 100-111, 1994. https://doi.org/10.1109/48.289455
  2. P. V. Walree, Channel Sounding for Acoustic Communications: Techniques and Shallow-Water Examples, FFI (Norwegian Defence Research Establishment) report, 2011.
  3. D. B. Kilfoyle and A. B. Baggeroer, "The state of art in underwater acoustic telemetry," IEEE Journal of the Oceanic Engineering, vol. 25, no. 1, pp. 4-27, 2000. https://doi.org/10.1109/48.820733
  4. T. D. Park, S. R. Lee, B. M. Kim, and J. W. Jung, "Analysis of optimal iterative turbo equalizer for underwater acoustic communication," Journal of the Korea Information and Communication Society, vol. 38C, no. 3, pp. 303-310, 2005.
  5. T. S. Ahn and J. W. Jung, "Experimental Performance analysis of BCJR-based turbo equalizer in underwater," Journal of the Korean Institute of Navigation and Port Research, vol. 39, no. 4, pp. 293-297, 2015. https://doi.org/10.5394/KINPR.2015.39.4.293
  6. M. H. Kim, T. D. Park, B. S. Lim, I. G. Lee, D. G. Oh, and J. W. Jung, "Analysis of turbo coding and decoding algorithm for DVB-RCS next generation," Journal of the Korea Information and Communications Society, vol. 36, no. 9, pp. 537-545, 2011. https://doi.org/10.7840/KICS.2011.36C.9.537
  7. M. Tuchler, R. Koetter, and A. Singer, "Turbo equalization : Principles and new results," IEEE Transactions on Communications, vol. 50, no. 5, pp. 754-767, 2002. https://doi.org/10.1109/TCOMM.2002.1006557
  8. V. Franz and J. B. Anderson, "Concatenated decoding with a reduced search BCJR algorithm," IEEE Journal of the Select. Areas Communications, vol. 16, pp. 186-195, 1998. https://doi.org/10.1109/49.661107