DOI QR코드

DOI QR Code

Numerical Investigation of the Effect of flow Passage Variation on the Projection Distance of the Foam Monitor

유로형상변경에 따른 폼 모니터 분사거리 변화의 수치적 해석

  • Lee, Young-Hoon (NK Corporation Technology Research Center) ;
  • RYU, Young-Chun (Graduate school, Department of Mechanical Engineering, Dong-A University) ;
  • Seong, Jeong-Hyun (Graduate school, Department of Mechanical Engineering, Dong-A University) ;
  • Park, Young-Chul (Department of Mechanical Enginnering, Dong-A University)
  • 이영훈 ((주)엔케이 기술연구소) ;
  • 류영춘 (동아대학교 대학원 기계공학과) ;
  • 성정현 (동아대학교 대학원 기계공학과) ;
  • 박영철 (동아대학교 기계공학과)
  • Received : 2015.10.15
  • Accepted : 2016.01.05
  • Published : 2016.01.31

Abstract

In this study, the relationship between flow characteristics and projection distance, depending on the shape was examined. A numerical investigation technique for fluid analysis of a foam monitor was developed for the prediction, comparison and validation of the actual injection performance. The foam monitor changes the flow pattern of fluid flow according to the shape, The fluid losses were calculated from the numerical investigation affecting the projection distance. The basic form of foam monitor was used as a designed shape in N. The modified model used the length increase model of the flow path, and straight line of the model. The inlet pressure was 6.5bar. The results showed that the length increase model of the flow path and straight line of the model in the nozzle projection distance had improved. The results comparing the error rates projection performance were well matched to the 7.43% obtained from the validity test of the analysis method.

본 연구에서는 폼 모니터의 유로 형상에 따라 유동 특성 및 분사거리에 비치는 영향을 수치적 해석기법인 유동해석을 통해 예측, 비교하고 실제 분사 성능 시험을 통해 검증하였다. 폼 모니터의 유로 형상에 따라 유체의 유동 양상이 달라지며, 유동손실이 발생함에 따라 분사거리에 영향을 미치는 것을 수치해석을 통해 계산하였다. 폼 모니터의 기본 형상은 N사에서 설계한 형상을 사용 하였고, 변경모델은 유로의 길이를 증가시킨 모델과 직선형태의 모델을 사용하였다. 입구압력은 6.5bar를 주었고, 계산 결과 유로의 길이를 증가시킨 모델과 직선형상 모델 모두 노즐에서의 분사거리가 향상되었다. 분사 성능시험결과와 비교한 결과 오차율은 7.43%로 비교적 잘 일치 하여 해석 기법의 타당성을 검증하였다.

Keywords

References

  1. C.W. Park., C.H. Hong., "User Guide of ANSYS Workbench", Intervision, 2008.
  2. P.G. Park, E.H. Jeong, J.H. Kim., "Numerical investigation of the Effect of Turbine flow Passage Variation on the Turbine Performance", J Power control and optimization; Journal of the Korea Society for Fluid Machinery, pp.481-487, 2005.
  3. M.C. Lai, P. H. Lu and J. H. Yoo, "Implications of 3-D Internal Flow Simulation on the Design of Inward-opening Pressure-swirl Injectors," SAE 2002-01-2698, 2002. DOI: http://dx.doi.org/10.4271/2002-01-2698
  4. J.S. Lee., "Computational Fluid Dynamics Hydraulic valve Meter", Journal of the Korea Academia-Industrial cooperation Society, Vol.13, No.5, pp.1963-1968, 2012. DOI: http://dx.doi.org/10.5762/KAIS.2012.13.5.1963
  5. M. S. Chon., ""Effect of Nozzle Hole Number on Fuel Spray and Emission Characteristics of High Pressure Diesel Injector,"" Journal of IlassKorea, Vol.17, No.4, pp.210-215, 2012. DOI: http://dx.doi.org/10.15435/jilasskr.2012.17.4.210
  6. S.J. Moon., S.J. Jeong., S.G. Lee., T.H. Kim., " A Numerical Study on the Geometry Optimization of Internal Flow Passage in the Common-rail Diesel Injector for Improving Injection Performance", Transactions of the Korean Society of Automotive Engineers, Vol. d2, No. 2, 2014.
  7. Ansys Inc, Ansys CFX Release 11.0, ANSYS CFX-Solver Theory Guide, ANSYS; 2006.