References
- ACI 318-14 (2014). Building code requirements for structural concrete.
- Aitcin, P. C., & Mehta, P. K. (1990). Effect of coarse aggregate characteristics on mechanical properties of high-strength concrete. ACI Materials Journal, 87(2), 103-107.
- American Concrete Institution. State-of-the-Art Report on Fiber Reinforced Concrete. ACI Manual of Concrete Practice 1998, Part 5. Farmington Hills, MI: ACI International
- Araujo, DL. (2002). Cisalhamento entre viga e laje pre-moldadas ligadas mediante nichos preenchidos com concreto de alto desempenho, Tese de D.Sc., Universidade de Sao Paulo, Escola de Engenharia de Sao Carlos, Brasil
- ASTM International (2013). ASTM C33/C33M: standard specification for concrete aggregates.
- ASTM International (2014). ASTM C231/C231M: standard test method for air content of freshly mixed concrete by the pressure method.
- ASTM International (2014). ASTM C469/C469 M: standard test method for static modulus of elasticity and poisson's ratio of concrete in compression.
- ASTM International (2015). ASTM C192/C192M: standard practice for making and curing concrete test specimens in the laboratory.
- ASTM International (2015). ASTM C31/C31M: standard practice for making and curing concrete test specimens in the field.
- ASTMInternational (2015).ASTMC39/C39M: standard test method for compressive strength of cylindrical concrete specimens.
- ASTM International (2015). ASTM C143/C143M: standard test method for slump of hydraulic cement concrete.
- Baalbaki,W., Benmokrane, B., Chaallal, O.,&Aitcin, P. C. (1991). Influence of coarse aggregate on elastic properties of high-performance concrete. ACI Materials Journal, 88(5), 499-503.
- Bhargava, P., Sharma, U. K., & Kaushik, S. K. (2006). Compressive stress-strain behavior of small scale steel fibre reinforced high strength concrete cylinders. Journal of advanced concrete technology, 4(1), 109-121. https://doi.org/10.3151/jact.4.109
- Carreira, D. J., & Chu, K. H. (1985, November). Stress-strain relationship for plain concrete in compression. In ACI Journal proceedings (Vol. 82, No. 6). ACI.
- CEB-FIP Model Code (1990). Design code.
- Chi, Y., Xu, L., & Zhang, Y. (2012). Experimental Study on Hybrid Fiber-Reinforced Concrete Subjected to Uniaxial Compression. Journal of Materials in Civil Engineering, 26(2), 211-218. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000764
- Choi, H. (2010). Shrinkage cracking characteristics of micro steel fiber-reinforced concrete. Master Thesis; Soongsil University, Seoul, Korea.
- Choi, S. J., Hong, B. T., Lee, S. J., & Won, J. P. (2014). Shrinkage and corrosion resistance of amorphous metallic fiber-reinforced cement composites. Composite Structures, 107, 537-543. https://doi.org/10.1016/j.compstruct.2013.08.010
- Choi, K. K., & Ku, D. O. (2014). Flexural behaviour of amorphous metal-fibre-reinforced concrete. Proceedings of the ICE-Structures and Buildings, 168(1), 15-25.
- Choi, K. K., Truong, G. T., & Choi, S. J. (2015). Restrained shrinkage cracking of amorphous metallic fibre-reinforced concrete. Proceedings of the ICE-Structures and Buildings, 168(12), 902-914.
- Constantinides, G., Ulm, F. J., & Van Vliet, K. (2003). On the use of nanoindentation for cementitious materials. Materials and Structures, 36(3), 191-196. https://doi.org/10.1007/BF02479557
- Cunha, V. M., Barros, J. A., & Sena-Cruz, J. M. (2006). Compression behaviour of steel fibre reinforced self-compacting concrete-age influence and modeling (p. 49). Report 06-DEC/E-04, University of Minho.
- Divsholi, B. S., Lim, T. Y. D., & Teng, S. (2014). Durability properties and microstructure of ground granulated blast furnace slag cement concrete. International Journal of Concrete Structures and Materials, 8(2), 157-164. https://doi.org/10.1007/s40069-013-0063-y
- Ezeldin, A. S., & Balaguru, P. N. (1992). Normal-and High-Strength Fiber-Reinforced Concrete under Compression. Journal of materials in civil engineering.
- Fanella, D. A., & Naaman, A. E. (1985, July). Stress-strain properties of fiber reinforced mortar in compression. In ACI Journal proceedings (Vol. 82, No. 4). ACI.
- Ferretti, E., Viola, E., Di Leo, A., Pascale, G. (1999). Crack propagation and macroscopic behaviour of concrete in compression. XIV Congresso nazionale AIMETA, Como, 6-9 (in Italian).
- Gettu, R., Bazant, Z. P., & Karr, M. E. (1990). Fracture properties and brittleness of high-strength concrete. ACI Materials Journal, 87(6), 608-618.
- Gutierrez, P. A., & Canovas, M. F. (1995). The modulus of elasticity of high performance concrete. Materials and Structures, 28(10), 559-568. https://doi.org/10.1007/BF02473187
- Hameed, R., Turatsinze, A., Duprat, F., & Sellier, A. (2010). Study on the flexural properties of metallic-hybrid-fiber-reinforced concrete. Maejo International Journal of Science and Technology, 4(2), 169-184.
- Jeong, Y., Park, H., Jun, Y., Jeong, J. H., & Oh, J. E. (2015). Microstructural verification of the strength performance of ternary blended cement systems with high volumes of fly ash and GGBFS. Construction and Building Materials, 95, 96-107. https://doi.org/10.1016/j.conbuildmat.2015.07.158
- Le, H. T., Nguyen, S. T., & Ludwig, H. M. (2014). A study on high performance fine-grained concrete containing rice husk ash. International Journal of Concrete Structures and Materials, 8(4), 301-307. https://doi.org/10.1007/s40069-014-0078-z
- Mansur, M. A., Chin, M. S., & Wee, T. H. (1999). Stress-strain relationship of high-strength fiber concrete in compression. Journal of Materials in Civil Engineering, 11(1), 21-29. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:1(21)
- Naaman, A. E., Wight, J. K., & Abdou, H. (1987). SIFCON connections for seismic resistant frames. Concrete International, 9(11), 34-39.
- Nataraja, M. C., Dhang, N., & Gupta, A. P. (1999). Stress-strain curves for steel-fiber reinforced concrete under compression. Cement & Concrete Composites, 21(5), 383-390. https://doi.org/10.1016/S0958-9465(99)00021-9
- Neves, R., & Gonlalves, A. (2000). Steel fibre reinforced conerete-durability related properties. Lisbon, Portugal: LNEC. (in Portuguese).
- Ou, Y. C., Tsai, M. S., Liu, K. Y., & Chang, K. C. (2011). Compressive behavior of steel-fiber-reinforced concrete with a high reinforcing index. Journal of Materials in Civil Engineering, 24(2), 207-215.
- Rossi, P., & Harrouche, N. (1990). Mix design and mechanical behaviour of some steel-fibre-reinforced concretes used in reinforced concrete structures. Materials and Structures, 23(4), 256-266. https://doi.org/10.1007/BF02472199
- Sorensen, C., Berge, E., & Nikolaisen, E. B. (2014). Investigation of fiber distribution in concrete batches discharged from ready-mix truck. International Journal of Concrete Structures and Materials, 8(4), 279-287. https://doi.org/10.1007/s40069-014-0083-2
- Srikar,G., Anand, G. A. A.& Suriya Prakash, S. (2016). A study on residual compression behavior of structural fiber reinforced concrete exposed to moderate temperature using digital image correlation. International Journal of Concrete Structures and Materials (Published online: 19 February 2016).
- Sriravindrarajah, R., Wang, N. D. H., & Ervin, L. J. W. (2012). Mix Design for Pervious Recycled Aggregate Concrete. International Journal of Concrete Structures and Materials, 6(4), 239-246. https://doi.org/10.1007/s40069-012-0024-x
- Wittmann, F. H. (2002). Crack formation and fracture energy of normal and high strength concrete. Sadhana, 27(4), 413-423. https://doi.org/10.1007/BF02706991
- Won, J. P., Hong, B. T., Choi, T. J., Lee, S. J., & Kang, J. W. (2012). Flexural behaviour of amorphous micro-steel fibre-reinforced cement composites. Composite Structures, 94(4), 1443-1449. https://doi.org/10.1016/j.compstruct.2011.11.031
- Xie, J. H., Guo, Y. C., Liu, L. S., & Xie, Z. H. (2015). Compressive and flexural behaviours of a new steel-fibre-reinforced recycled aggregate concrete with crumb rubber. Construction and Building Materials, 79, 263-272. https://doi.org/10.1016/j.conbuildmat.2015.01.036
Cited by
- Workability and Mechanical Properties of Hybrid Fiber Reinforced Concrete Using Amorphous Steel Fiber and Polyamide Fiber vol.4, pp.4, 2016, https://doi.org/10.14190/jrcr.2016.4.4.470
- 순환 잔골재 및 굵은골재를 사용한 SFRC 보의 성능 평가 vol.21, pp.2, 2017, https://doi.org/10.11112/jksmi.2017.21.2.122
- Pull-Out Behaviour of Hooked End Steel Fibres Embedded in Ultra-high Performance Mortar with Various W/B Ratios vol.11, pp.2, 2016, https://doi.org/10.1007/s40069-017-0193-8
- Effect of Fiber Hybridization on Durability Related Properties of Ultra-High Performance Concrete vol.11, pp.2, 2017, https://doi.org/10.1007/s40069-017-0195-6
- Experiments on Tensile and Shear Characteristics of Amorphous Micro Steel (AMS) Fibre-Reinforced Cementitious Composites vol.11, pp.4, 2016, https://doi.org/10.1007/s40069-017-0214-7
- The Effect of Specimen Shape on the Mechanical Properties of Sisal Fiber-Reinforced Concrete vol.12, pp.None, 2016, https://doi.org/10.2174/1874149501812010368
- Ductility behaviours of oil palm shell steel fibre-reinforced concrete beams under flexural loading vol.23, pp.7, 2016, https://doi.org/10.1080/19648189.2017.1320234
- Investigation of the effect of steel fibers on the shear crack-opening and crack-slip behavior of prestressed concrete beams using digital image correlation vol.193, pp.None, 2016, https://doi.org/10.1016/j.engstruct.2019.05.030
- Crack Resistance and Mechanical Properties of Polyvinyl Alcohol Fiber-Reinforced Cement-Stabilized Macadam Base vol.2020, pp.None, 2016, https://doi.org/10.1155/2020/6564076
- Direct shear behavior after elevated temperature exposure of epoxy-coated carbon textile-reinforced mortar (TRM) modified with different types of microfibers vol.54, pp.4, 2016, https://doi.org/10.1617/s11527-021-01748-0
- Effect of eco-friendly pervious concrete with amorphous metallic fiber on evaporative cooling performance vol.297, pp.None, 2016, https://doi.org/10.1016/j.jenvman.2021.113269