DOI QR코드

DOI QR Code

Computing the Refined Compression Field Theory

  • Hernandez-Diaz, A.M. (Department of Civil Engineering, Universidad Catolica de Murcia (UCAM)) ;
  • Garcia-Roman, M.D. (Department of Civil Engineering, University of La Laguna)
  • Received : 2015.12.03
  • Accepted : 2016.03.31
  • Published : 2016.06.30

Abstract

In recent years, some modifications were introduced in the stress-strain relationship of the steel in order to develop a more efficient shear model for reinforced concrete members. The last contribution in this sense corresponding to the Refined Compression Field Theory (RCFT, 2009); this theory proposed a steel constitutive model that has account the tension stiffening area prescribed by technical codes, what simplifies all the design process. However, under certain design conditions supported by such codes, the RCFT model does not provide a real (non-complex) solution for the steel yield strain when the prescribed tension stiffening area is considered; then the load-strain response cannot be computed. In this technical note, the tension stiffening area is fixed in order to guarantee the application of the embedded steel constitutive model for all the standard design range.

Keywords

References

  1. Abersman, B., Conte, D. F (1973) The design and testing to failure of a prestressed concrete beam loaded in flexure and shear, BASc thesis, Department of Civil Engineering, University of Toronto, Canada.
  2. ASCE-ACE Committee 445 on Shear and Torsion. (1998). Recent approaches to shear design of structural concrete. Journal of Structural Engineering, 124(12), 1375-1416. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:12(1375)
  3. Belarbi, A., & Hsu, T. T. C. (1994). Constitutive laws of concrete in tension and reinforcing bars stiffened by concrete. ACI Structural Journal, 91(4), 465-474.
  4. Bentz, E. C. (2005). Explaining the riddle of tension stiffening models for shear panel experiments. ASCE Journal of Structural Engineering, 131(9), 1422-1425. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:9(1422)
  5. Carbonell-Marquez, Juan F., Gil-Martin, Luisa M., Fernandez-Ruiz, M. Alejandro, & Hernandez-Montes, E. (2014). Effective area in tension stiffening of reinforced concrete piles subjected to flexure according to Eurocode 2. Engineering Structures, 76, 62-74. https://doi.org/10.1016/j.engstruct.2014.06.041
  6. Cladera Bohigas, A. (2002) Shear Design of Reinforced High-Strength Concrete Beams, Ph.D. Dissertation, Technical University of Catalonia, Barcelona, Spain.
  7. Collins, M. P., & Mitchell, D. (1991). Prestressed concrete structures. Upper Saddle River, NJ: Prentice Hall.
  8. EC-2 (2002), Eurocode. Design of concrete structures-part 1, Brussels, Belgium.
  9. EHE. (2008). Instruccion de Hormigon Estructural. Spain: Ministerio de Fomento, Gobierno de Espana.
  10. Gil-Martin, L. M., Hernandez-Montes, E., Aschheim, M., & Pantazopoulou, S. (2009). Refinements to compression field theory, with application to wall-type structures, ACI Special publication, 265, 123-142.
  11. Hernandez Montes, E., & Gil-Martin, L. M. (2014). Hormigon armado y pretensado. Concreto reforzado y preesforzado. Madrid, Spain: Colegio de Ingenieros de Caminos, Canales y Puertos.
  12. Hernandez-Diaz, A. M. (2012) Revision de las Teorias de Campo de Compresiones en Hormigon Estructural, Ph.D. Dissertation, University of Granada, Granada, Spain.
  13. Hernandez-Diaz, A. M., & Gil-Martin, L. M. (2012). Analysis of the equal principal angles assumption in the shear design of reinforced concrete members. Engineering Structures, 42, 95-105. https://doi.org/10.1016/j.engstruct.2012.04.010
  14. Hernandez-Montes, E., Cesetti, A., & Gil-Martin, L. M. (2013). Discussion of "An efficient tension-stiffening model for nonlinear analysis of reinforced concrete members", by Renata S.B. Stramandinoli, Henriette L. La Rovere. Engineering Structures, 48, 763-764. https://doi.org/10.1016/j.engstruct.2012.09.032
  15. Jeong, J.-P., & Kim, W. (2014). Shear resistant mechanism into base components: Beam action and arch action in shear-critical RC members. International Journal of Concrete Structures and Materials, 8(1), 1-14. https://doi.org/10.1007/s40069-013-0064-x
  16. Mofidi, A., & Chaallal, O. (2014). Tests and design provisions for reinforced-concrete beams strengthened in shear using FRP sheets and strips. International Journal of Concrete Structures and Materials, 8(2), 117-128. https://doi.org/10.1007/s40069-013-0060-1
  17. Palermo, M., Gil-Martin, L. M., Hernandez-Montes, E., & Aschheim, M. (2014). Refined compression field theory for plastered straw bale walls. Construction and Building Materials, 58, 101-110. https://doi.org/10.1016/j.conbuildmat.2014.02.004
  18. Palermo, M., Gil-Martin, L. M., Trombetti, T., & Hernandez-Montes, E. (2013). In-plane shear behaviour of thin low reinforced concrete panels for earthquake reconstruction. Materials and Structures, 46(5), 841-856. https://doi.org/10.1617/s11527-012-9937-8
  19. Stramandinoli, Renata S. B., Rovere, La, & Henriette, L. (2008). An efficient tension-stiffening model for nonlinear analysis of reinforced concrete members. Engineering Structures, 30(7), 2069-2080. https://doi.org/10.1016/j.engstruct.2007.12.022
  20. Vecchio, F. J., & Collins, M. P. (1986). The modified compression field theory for reinforced concrete elements subjected to shear. ACI Journal, 83(2), 219-231.
  21. Wu, H. Q., Gilbert, R. I. (2008) An experimental study of tension stiffening in reinforced concrete members under short-term and long-term loads. UNICIV REPORT No. R-449, University of New South Wales, Australia.

Cited by

  1. Optimum Shape Design of Geometrically Nonlinear Submerged Arches Using the Coral Reefs Optimization with Substrate Layers Algorithm vol.11, pp.13, 2016, https://doi.org/10.3390/app11135862