DOI QR코드

DOI QR Code

The Preventive and Curative Effect of Cyanidin-3β-D-Glycoside and Its Metabolite Protocatechuic Acid Against TNBS-induced Colitis in Mice

  • Jang, Se-Eun (Department of Food and Nutrition, Kyung Hee University) ;
  • Choi, Jong-Ryul (Department of Life and Nanopharmaceutical Sciences and Department of Pharmacy, College of Pharmacy, Kyung Hee University) ;
  • Han, Myung Joo (Department of Food and Nutrition, Kyung Hee University) ;
  • Kim, Dong-Hyun (Department of Life and Nanopharmaceutical Sciences and Department of Pharmacy, College of Pharmacy, Kyung Hee University)
  • Received : 2016.06.23
  • Accepted : 2016.09.23
  • Published : 2016.12.31

Abstract

Cyanidin-$3{\beta}$-D-glycoside (C3G), which is widely distributed in herbal medicines and functional foods, exhibits anti-inflammatory, anti-oxidant, and anti-scratching behavioral effects. Orally administered C3G is metabolized to protocatechuic acid (PA) by gut microbiota. Therefore, we compared the anti-colitic effect of C3G to that of PA in mice with 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis. Orally administered C3G and PA preventively and curatively ameliorated TNBS-induced colitis parameters, including macroscopic colitis score, colon shortening, and increase of myeloperoxidase activity. Treatment with C3G or PA also inhibited the expression of cyclooxygenase-2, inducible NO synthatase, $IL-1{\beta}$, IL-6, and $TNF-{\alpha}$ and the activation of $NF-{\kappa}B$ in the colon of mice with TNBS-induced colitis. Furthermore, these also inhibited lipopolysaccharide-induced $NF-{\kappa}B$ activation and $TNF-{\alpha}$ expression in peritoneal macrophages. The anti-colitic effect of PA was more effective than C3G. Orally administered PA more potently attenuate colitis than C3G by inhibiting $NF-{\kappa}B$ activation and the anti-colitic efficacy of C3G may be dependent on the biotransformation of C3G to PA by gut microbiota.

Keywords

References

  1. He, J.; Giusti, M. M. Annu. Rev. Food Sci. Technol. 2010, 1, 163-187. https://doi.org/10.1146/annurev.food.080708.100754
  2. Han, S. J.; Ryu, S. N.; Trinh, H. T.; Joh, E. H.; Jang, S. Y.; Han, M. J.; Kim, D. H. J. Food Sci. 2009, 74, H253- H258. https://doi.org/10.1111/j.1750-3841.2009.01327.x
  3. de Ferrars, R. M.; Czank, C.; Zhang, Q.; Botting, N. P.; Kroon, P. A.; Cassidy, A.; Kay, C. D. Br. J. Pharmacol. 2014, 171, 3268-3282. https://doi.org/10.1111/bph.12676
  4. Joseph, S. V.; Edirisinghe, I.; Burton-Freeman, B. M. J. Agric. Food Chem. 2014, 62, 3886-3903. https://doi.org/10.1021/jf4044056
  5. Yang, J.; Xiao, Y. Y. Crit. Rev. Food Sci. Nutr. 2013, 53, 1202-1225. https://doi.org/10.1080/10408398.2012.692408
  6. Tsuda, T.; Horio, F.; Osawa, T. Biofactors 2000, 13, 133-139. https://doi.org/10.1002/biof.5520130122
  7. Min, S.W.; Ryu, S. N.; Kim, D. H. Int. Immunopharmacol. 2010, 10, 959-966. https://doi.org/10.1016/j.intimp.2010.05.009
  8. Vitaglione, P.; Donnarumma, G.; Napolitano, A.; Galvano, F.; Gallo, A.; Scalfi, L.; Fogliano, V. J. Nutr. 2007, 137, 2043-2048. https://doi.org/10.1093/jn/137.9.2043
  9. Faria, A.; Fernandes, I.; Norberto, S.; Mateus, N.; Calhau, C. J. Agric. Food Chem. 2014, 62, 6898-6902. https://doi.org/10.1021/jf501808a
  10. di Gesso, J. L.; Kerr, J. S.; Zhang, Q.; Raheem, S.; Yalamanchili, S. K.; O'Hagan, D.; Kay, C. D.; O'Connell, M. A. Mol. Nutr. Food Res. 2015, 59, 1143-1154. https://doi.org/10.1002/mnfr.201400799
  11. Lee, S. Y.; Jeong, J. J.; Eun, S. H.; Kim, D. H. Eur. J. Pharmacol. 2015, 762, 333-343. https://doi.org/10.1016/j.ejphar.2015.06.011
  12. Ebert, E. C.; Hagspiel, K. D. Dig. Dis. Sci. 2011, 56, 295-302. https://doi.org/10.1007/s10620-010-1508-7
  13. Wallace, K. L.; Zheng, L. B.; Kanazawa, Y.; Shih, D. Q. World J. Gastroenterol. 2014, 20, 6-21. https://doi.org/10.3748/wjg.v20.i1.6
  14. Laveti, D.; Kumar, M.; Hemalatha, R.; Sistla, R.; Naidu, V. G.; Talla, V.; Verma, V.; Kaur, N.; Nagpal, R. Inflamm. Allergy Drug Targets 2013, 12, 349-361. https://doi.org/10.2174/18715281113129990053
  15. Fairweather, D.; Rose, N. R. Lupus 2005, 14, 646-651. https://doi.org/10.1191/0961203305lu2192oa
  16. Dauphinee, S. M.; Karsan, A. Lab. Invest. 2006, 86, 9-22. https://doi.org/10.1038/labinvest.3700366
  17. Perkins, N. D.; Gilmore, T. D. Cell Death Differ. 2006, 13, 759-772. https://doi.org/10.1038/sj.cdd.4401838
  18. Tsuda, T.; Horio, F.; Osawa, T. J. Nutr. Sci. Vitaminol. 2002, 48, 305-310. https://doi.org/10.3177/jnsv.48.305
  19. Zhang, Y.; Lian, F.; Zhu, Y.; Xia, M.; Wang, Q.; Ling, W.; Wang, X. D. Inflamm. Res. 2010, 59, 723-730. https://doi.org/10.1007/s00011-010-0183-7
  20. Masella, R.; Santangelo, C.; D'Archivio, M.; Li Volti, G.; Giovannini, C.; Galvano, F. Curr. Med. Chem. 2012, 19, 2901-2917. https://doi.org/10.2174/092986712800672102

Cited by

  1. Beneficial Effect of Herbal Formulation KM1608 on Inflammatory Bowl Diseases: A Preliminary Experimental Study vol.23, pp.8, 2016, https://doi.org/10.3390/molecules23082068
  2. An update on dietary consideration in inflammatory bowel disease: anthocyanins and more vol.12, pp.10, 2016, https://doi.org/10.1080/17474124.2018.1513322
  3. The Effects and Mechanisms of Cyanidin-3-Glucoside and Its Phenolic Metabolites in Maintaining Intestinal Integrity vol.8, pp.10, 2016, https://doi.org/10.3390/antiox8100479
  4. Potential Modulatory Microbiome Therapies for Prevention or Treatment of Inflammatory Bowel Diseases vol.14, pp.6, 2021, https://doi.org/10.3390/ph14060506