DOI QR코드

DOI QR Code

Extracellular Proteome Profiling of Bacillus pumilus SCU11 Producing Alkaline Protease for Dehairing

  • Wang, Chao (Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University) ;
  • Yu, Shiqiang (Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University) ;
  • Song, Ting (Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University) ;
  • He, Tingting (Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University) ;
  • Shao, Huanhuan (Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University) ;
  • Wang, Haiyan (Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University)
  • Received : 2016.02.22
  • Accepted : 2016.07.25
  • Published : 2016.11.28

Abstract

Bacillus pumilus is one of the most characterized microorganisms that are used for high-level production of select industrial enzymes. A novel B. pumilus SCU11 strain possessing high alkaline protease activity was obtained in our previous work. The culture supernatant of this strain showed efficient dehairing capability with minimal collagen damage, indicating promising potential applications in the leather industry. In this study, the strain's extracellular proteome was identified by LC-MS/MS-based shotgun proteomic analysis, and their related secretory pathways were characterized by BLAST searches. A total of 513 proteins, including 100 actual secreted and 413 intracellular proteins, were detected in the extracellular proteome. The functions of these secreted proteins were elucidated and four complete secretory systems (Sec, Tat, Com, and ABC transporter) were proposed for B. pumilus. These data provide B. pumilus a comprehensive extracellular proteome profile, which is a valuable theoretical and applicative basis for future genetic modifications and development of industrial enzymes.

Keywords

References

  1. Antelmann H, Van Dijl JM, Bron S, Hecker M. 2006. Proteomic survey through secretome of Bacillus subtilis. Methods Biochem. Anal. 49: 179.
  2. Bottone EJ. 2003. Production by Bacillus pumilus (MSH) of an antifungal compound that is active against Mucoraceae and Aspergillus species: preliminary report. J. Med. Microbiol. 52: 69-74. https://doi.org/10.1099/jmm.0.04935-0
  3. Britton RA, Eichenberger P, Gonzalez-Pastor JE, Fawcett P, Monson R, Losick R, Grossman AD. 2002. Genome-wide analysis of the stationary-phase sigma factor (sigma-H) regulon of Bacillus subtilis. J. Bacteriol. 184: 4881-4890. https://doi.org/10.1128/JB.184.17.4881-4890.2002
  4. Carroll RK, Rivera FE, Cavaco CK, Johnson GM, Martin D, Shaw LN. 2014. The lone S41 family C-terminal p rocessing protease in Staphylococcus aureus is localized to the cell wall and contributes to virulence. Microbiology 160: 1737-1748. https://doi.org/10.1099/mic.0.079798-0
  5. Choi N-S, Chung D-M, Park C-S, Ahn K-H, Kim JS, Song JJ, et al. 2010. Expression and identification of a minor extracellular fibrinolytic enzyme (Vpr) from Bacillus subtilis KCTC 3014. Biotechnol. Bioprocess Eng. 15: 446-452. https://doi.org/10.1007/s12257-009-0191-z
  6. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674-3676. https://doi.org/10.1093/bioinformatics/bti610
  7. El-Refai H, Abdel-Naby M, Gaballa A, El-Araby M, Fattah AA. 2005. Improvement of the newly isolated Bacillus pumilus FH9 keratinolytic activity. Process Biochem. 40: 2325-2332. https://doi.org/10.1016/j.procbio.2004.09.006
  8. Fu LL, Xu ZR, Li WF, Shuai JB, Lu P, Hu CX. 2007. Protein secretion pathways in Bacillus subtilis: implication for optimization of heterologous protein secretion. Biotechnol. Adv. 25: 1-12. https://doi.org/10.1016/j.biotechadv.2006.08.002
  9. Gao J, Li X, Feng Y, Zhang B, Miao S, Wang L, Wang N. 2012. Purification and crystallization of the ABC-type transport substrate-binding protein OppA from Thermoanaerobacter tengcongensis. Biochem. Biophys. Res. Commun. 423: 45-49. https://doi.org/10.1016/j.bbrc.2012.05.067
  10. Garmory HS, Titball RW. 2004. ATP-binding cassette transporters are targets for the development of antibacterial vaccines and therapies. Infect. Immun. 72: 6757-6763. https://doi.org/10.1128/IAI.72.12.6757-6763.2004
  11. Ghosh A, Chakrabarti K, Chattopadhyay D. 2008. Degradation of raw feather by a novel high molecular weight extracellular protease from newly isolated Bacillus cereus DCUW. J. Ind. Microbiol. Biotechnol. 35: 825-834. https://doi.org/10.1007/s10295-008-0354-5
  12. Gohar M, Gilois N, Graveline R, Garreau C, Sanchis V, Lereclus D. 2005. A comparative study of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis extracellular proteomes. Proteomics 5: 3696-3711. https://doi.org/10.1002/pmic.200401225
  13. Greenbaum D, Luscombe NM, Jansen R, Qian J, Gerstein M. 2001. Interrelating different types of genomic data, from proteome to secretome: 'oming in on function. Genome Res. 11: 1463-1468. https://doi.org/10.1101/gr.207401
  14. Grundling A, Schneewind O. 2007. Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 104: 8478-8483. https://doi.org/10.1073/pnas.0701821104
  15. Gupta M, Rao KK. 2009. Epr plays a key role in DegUmediated swarming motility of Bacillus subtilis. FEMS Microbiol. Lett. 295: 187-194. https://doi.org/10.1111/j.1574-6968.2009.01596.x
  16. Gupta R, Beg QK, Lorenz P. 2002. Bacterial alkaline proteases: molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 59: 15-32. https://doi.org/10.1007/s00253-002-0975-y
  17. Gupta RK, Prasad D, Sathesh J, Naidu RB, Kamini NR, Palanivel S, Gowthaman MK. 2012. Scale-up of an alkaline protease from Bacillus pumilus MTCC 7514 utilizing fish meal as a sole source of nutrients. J. Microbiol. Biotechnol. 22: 1230-1236. https://doi.org/10.4014/jmb.1203.03021
  18. Handtke S, Volland S, Methling K, Albrecht D, Becher D, Nehls J, et al. 2014. Cell physiology of the biotechnological relevant bacterium Bacillus pumilus - an omics-based approach. J. Biotechnol. 192: 204-214. https://doi.org/10.1016/j.jbiotec.2014.08.028
  19. Huang Q, Peng Y, Li X, Wang H, Zhang Y. 2003. Purification and characterization of an extracellular alkaline serine protease with dehairing function from Bacillus pumilus. Curr. Microbiol. 46: 169-173. https://doi.org/10.1007/s00284-002-3850-2
  20. Huang R, Yang Q, Feng H. 2015. Single amino acid mutation alters thermostability of the alkaline protease from Bacillus pumilus: thermodynamics and temperature dependence. Acta Biochim. Biophs. Sin. 47: 98-105. https://doi.org/10.1093/abbs/gmu120
  21. Jaouadi NZ, Jaouadi B, Hlima HB, Rekik H, Belhoul M, Hmidi M, et al. 2014. Probing the crucial role of Leu31 and Thr33 of the Bacillus pumilus CBS alkaline protease in substrate recognition and enzymatic depilation of animal hide. PLoS One 9: e108367. https://doi.org/10.1371/journal.pone.0108367
  22. Jayakumar R, Jayashree S, Annapurna B, Seshadri S. 2012. Characterization of thermostable serine alkaline protease from an alkaliphilic strain Bacillus pumilus MCAS8 and its applications. Appl. Biochem. Biotechnol. 168: 1849-1866. https://doi.org/10.1007/s12010-012-9902-6
  23. Kho CW, Park SG, Cho S, Lee DH, Myung PK, Park BC. 2005. Confirmation of Vpr as a fibrinolytic enzyme present in extracellular proteins of Bacillus subtilis. Protein Expr. Purif. 39: 1-7. https://doi.org/10.1016/j.pep.2004.08.008
  24. Kim HK, Choi HJ, Kim MH, Sohn CB, Oh TK. 2002. Expression and characterization of $Ca^{2+}$-independent lipase from Bacillus pumilus B26. Biochim. Biophys. Acta 1583: 205-212. https://doi.org/10.1016/S1388-1981(02)00214-7
  25. Klug-Santner BG, Schnitzhofer W, Vrsanska M, Weber J, Agrawal PB, Nierstrasz VA, Guebitz GM. 2006. Purification and characterization of a new bioscouring pectate lyase from Bacillus pumilus BK2. J. Biotechnol. 121: 390-401. https://doi.org/10.1016/j.jbiotec.2005.07.019
  26. Kobayashi K, Sudiarta IP, Kodama T, Fukushima T, Ara K, Ozaki K, Sekiguchi J. 2012. Identification and characterization of a novel polysaccharide deacetylase C (PdaC) from Bacillus subtilis. J. Biol. Chem. 287: 9765-9776. https://doi.org/10.1074/jbc.M111.329490
  27. Kuhad RC, Singh A. 2013. Biotechnology for Environmental Management and Resource Recovery. Springer, Berlin/Heidberg.
  28. Kunst F, Ogasawara N, Moszer I, Albertini A, Alloni G, Azevedo V, et al. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249-256. https://doi.org/10.1038/36786
  29. Lanigan-Gerdes S, Dooley AN, Faull KF, Lazazzera BA. 2007. Identification of subtilisin, Epr and Vpr as enzymes that produce CSF, an extracellular signalling peptide of Bacillus subtilis. Mol. Microbiol. 65: 1321-1333. https://doi.org/10.1111/j.1365-2958.2007.05869.x
  30. Lechat P, Hummel L, Rousseau S, Moszer I. 2007. GenoList: an integrated environment for comparative analysis of microbial genomes. Nucleic Acids Res. 36: D469-D474. https://doi.org/10.1093/nar/gkm1042
  31. Lee SJ, Kim DM, Bae KH, Byun SM, Chung JH. 2000. Enhancement of secretion and extracellular stability of staphylokinase in Bacillus subtilis by wprA gene disruption. Appl. Environ. Microbiol. 66: 476-480. https://doi.org/10.1128/AEM.66.2.476-480.2000
  32. Manns DC, Churey JJ, Worobo RW. 2012. Functional assignment of YvgO, a novel set of purified and chemically characterized proteinaceous antifungal variants produced by Bacillus thuringiensis SF361. Appl. Environ. Microbiol. 78: 2543-2552. https://doi.org/10.1128/AEM.07727-11
  33. Manns DC, Churey JJ, Worobo RW. 2014. Nutrientdependent efficacy of the antifungal protein YvgO correlates to cellular proliferation rate in Candida albicans 3153A and Byssochlamys fulva H25. Probiotics Antimicrob. Proteins 6: 198-207. https://doi.org/10.1007/s12602-014-9167-1
  34. Molina CA, Cana-Roca JF, Osuna A, Vilchez S. 2010. Selection of a Bacillus pumilus strain highly active against Ceratitis capitata (Wiedemann) larvae. Appl. Environ. Microbiol. 76: 1320-1327. https://doi.org/10.1128/AEM.01624-09
  35. Nguyen HD, Phan T, Schumann W. 2011. Analysis and application of Bacillus subtilis sortases to anchor recombinant proteins on the cell wall. AMB Express 1: 22. https://doi.org/10.1186/2191-0855-1-22
  36. Page MJ, Di Cera E. 2008. Serine peptidases: classification, structure and function. Cell. Mol. Life Sci. 65: 1220-1236. https://doi.org/10.1007/s00018-008-7565-9
  37. Paolicchi A, Dominici S, Pieri L, Maellaro E, Pompella A. 2002. Glutathione catabolism as a signaling mechanism. Biochem. Pharmacol. 64: 1027-1035. https://doi.org/10.1016/S0006-2952(02)01173-5
  38. Poorna CA, Prema P. 2006. Production and partial characterization of endoxylanase by Bacillus pumilus using agro industrial residues. Biochem. Eng. J. 32: 106-112. https://doi.org/10.1016/j.bej.2006.09.016
  39. Rawlings ND, Barrett AJ. 1993. Evolutionary families of peptidases. Biochem. J. 290: 205-218. https://doi.org/10.1042/bj2900205
  40. Rawlings ND, Waller M, Barrett AJ, Bateman A. 2014. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 42: D503-D509. https://doi.org/10.1093/nar/gkt953
  41. Schallmey M, Singh A, Ward OP. 2004. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50: 1-17. https://doi.org/10.1139/w03-076
  42. Shah IM, Dworkin J. 2010. Induction and regulation of a secreted peptidoglycan hydrolase by a membrane Ser/Thr kinase that detects muropeptides. Mol. Microbiol. 75: 1232-1243. https://doi.org/10.1111/j.1365-2958.2010.07046.x
  43. Shao H, Cao Q, Zhao H, Tan X, Feng H. 2015. Construction of novel shuttle expression vectors for gene expression in Bacillus subtilis and Bacillus pumilus. J. Gen. Appl. Microbiol. 61: 124-131. https://doi.org/10.2323/jgam.61.124
  44. Sibbald MJ, Ziebandt AK, Engelmann S, Hecker M, de Jong A, Harmsen HJ, et al. 2006. Mapping the pathways to staphylococcal pathogenesis by comparative secretomics. Microbiol. Mol. Biol. Rev. 70: 755-788. https://doi.org/10.1128/MMBR.00008-06
  45. Stephenson K, J ensen C, Jorgensen S , Harwood C. 2002. Simultaneous inactivation of the wprA and dltB genes of Bacillus subtilis reduces the yield of ${\alpha}$-amylase. Lett. Appl. Microbiol. 34: 394-397. https://doi.org/10.1046/j.1472-765X.2002.01106.x
  46. Suzuki T, Tahara Y. 2003. Characterization of the Bacillus subtilis ywtD gene, whose product is involved in gammapolyglutamic acid degradation. J. Bacteriol. 185: 2379-2382. https://doi.org/10.1128/JB.185.7.2379-2382.2003
  47. Tjalsma H, Antelmann H, Jongbloed JD, Braun PG, Darmon E, Dorenbos R, et al. 2004. Proteomics of protein secretion by Bacillus subtilis: separating the "secrets" of the secretome. Microbiol. Mol. Biol. Rev. 68: 207-233. https://doi.org/10.1128/MMBR.68.2.207-233.2004
  48. Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM. 2000. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol. Mol. Biol. Rev. 64: 515-547.
  49. Vollmer W, Joris B, Charlier P, Foster S. 2008. Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol. Rev. 32: 259-286. https://doi.org/10.1111/j.1574-6976.2007.00099.x
  50. Wang HY, Liu DM, Liu Y, Cheng CF, Ma QY, Huang Q, Zhang YZ. 2007. Screening and mutagenesis of a novel Bacillus pumilus strain producing alkaline protease for dehairing. Lett. Appl. Microbiol. 44: 1-6. https://doi.org/10.1111/j.1472-765X.2006.02039.x
  51. Westers L, Westers H, Quax WJ. 2004. Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim. Biophys. Acta 1694: 299-310. https://doi.org/10.1016/j.bbamcr.2004.02.011
  52. Wu S, Zhu Z, Fu L, Niu B, Li W. 2011. WebMGA: a customizable Web server for fast metagenomic sequence analysis. BMC Genomics 12: 444. https://doi.org/10.1186/1471-2164-12-444
  53. Yao D, Qu J, Chang P, Tao Y, Yang D. 2012. Production and characterization of alkaline protease from hemoglobindegrading Bacillus pumilus NJM4 to produce fermented blood meal. J. Food Sci. Technol. 49: 626-631. https://doi.org/10.1007/s13197-010-0205-z
  54. Yu SQ, Gui JH, Wang HY. 2014. Proteome analysis of Bacillus pumilus extracellular proteins by two dimensional electrophoresis and identification of differential proteins under alkaline stress. Chin. J. Appl. Environ. Biol. 2014: 217-222.
  55. Zhao C-W, Wang H-Y, Zhang Y-Z, Feng H. 2012. Draft genome sequence of Bacillus pumilus BA06, a producer of alkaline serine protease with leather-dehairing function. J. Bacteriol. 194: 6668-6669. https://doi.org/10.1128/JB.01694-12
  56. Zhou M, Theunissen D, Wels M, Siezen RJ. 2010. LABsecretome: a genome-scale comparative analysis of the predicted extracellular and surface-associated proteins of lactic acid bacteria. BMC Genomics 11: 651. https://doi.org/10.1186/1471-2164-11-651

Cited by

  1. 김치로부터 단백질 분해 효소활성이 우수한 Bacillus subtilis 균주의 분리 vol.45, pp.1, 2016, https://doi.org/10.4014/mbl.1611.11006
  2. Transcriptome profiling analysis reveals metabolic changes across various growth phases in Bacillus pumilus BA06 vol.17, pp.None, 2016, https://doi.org/10.1186/s12866-017-1066-7
  3. The Practical Potential of Bacilli and Their Enzymes for Industrial Production vol.11, pp.None, 2020, https://doi.org/10.3389/fmicb.2020.01782
  4. A highly efficient protein degradation system in Bacillus sp. CN2: a functional-degradomics study vol.105, pp.2, 2021, https://doi.org/10.1007/s00253-020-11083-z