References
- Antelmann H, Van Dijl JM, Bron S, Hecker M. 2006. Proteomic survey through secretome of Bacillus subtilis. Methods Biochem. Anal. 49: 179.
- Bottone EJ. 2003. Production by Bacillus pumilus (MSH) of an antifungal compound that is active against Mucoraceae and Aspergillus species: preliminary report. J. Med. Microbiol. 52: 69-74. https://doi.org/10.1099/jmm.0.04935-0
- Britton RA, Eichenberger P, Gonzalez-Pastor JE, Fawcett P, Monson R, Losick R, Grossman AD. 2002. Genome-wide analysis of the stationary-phase sigma factor (sigma-H) regulon of Bacillus subtilis. J. Bacteriol. 184: 4881-4890. https://doi.org/10.1128/JB.184.17.4881-4890.2002
- Carroll RK, Rivera FE, Cavaco CK, Johnson GM, Martin D, Shaw LN. 2014. The lone S41 family C-terminal p rocessing protease in Staphylococcus aureus is localized to the cell wall and contributes to virulence. Microbiology 160: 1737-1748. https://doi.org/10.1099/mic.0.079798-0
- Choi N-S, Chung D-M, Park C-S, Ahn K-H, Kim JS, Song JJ, et al. 2010. Expression and identification of a minor extracellular fibrinolytic enzyme (Vpr) from Bacillus subtilis KCTC 3014. Biotechnol. Bioprocess Eng. 15: 446-452. https://doi.org/10.1007/s12257-009-0191-z
- Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674-3676. https://doi.org/10.1093/bioinformatics/bti610
- El-Refai H, Abdel-Naby M, Gaballa A, El-Araby M, Fattah AA. 2005. Improvement of the newly isolated Bacillus pumilus FH9 keratinolytic activity. Process Biochem. 40: 2325-2332. https://doi.org/10.1016/j.procbio.2004.09.006
- Fu LL, Xu ZR, Li WF, Shuai JB, Lu P, Hu CX. 2007. Protein secretion pathways in Bacillus subtilis: implication for optimization of heterologous protein secretion. Biotechnol. Adv. 25: 1-12. https://doi.org/10.1016/j.biotechadv.2006.08.002
- Gao J, Li X, Feng Y, Zhang B, Miao S, Wang L, Wang N. 2012. Purification and crystallization of the ABC-type transport substrate-binding protein OppA from Thermoanaerobacter tengcongensis. Biochem. Biophys. Res. Commun. 423: 45-49. https://doi.org/10.1016/j.bbrc.2012.05.067
- Garmory HS, Titball RW. 2004. ATP-binding cassette transporters are targets for the development of antibacterial vaccines and therapies. Infect. Immun. 72: 6757-6763. https://doi.org/10.1128/IAI.72.12.6757-6763.2004
- Ghosh A, Chakrabarti K, Chattopadhyay D. 2008. Degradation of raw feather by a novel high molecular weight extracellular protease from newly isolated Bacillus cereus DCUW. J. Ind. Microbiol. Biotechnol. 35: 825-834. https://doi.org/10.1007/s10295-008-0354-5
- Gohar M, Gilois N, Graveline R, Garreau C, Sanchis V, Lereclus D. 2005. A comparative study of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis extracellular proteomes. Proteomics 5: 3696-3711. https://doi.org/10.1002/pmic.200401225
- Greenbaum D, Luscombe NM, Jansen R, Qian J, Gerstein M. 2001. Interrelating different types of genomic data, from proteome to secretome: 'oming in on function. Genome Res. 11: 1463-1468. https://doi.org/10.1101/gr.207401
- Grundling A, Schneewind O. 2007. Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 104: 8478-8483. https://doi.org/10.1073/pnas.0701821104
- Gupta M, Rao KK. 2009. Epr plays a key role in DegUmediated swarming motility of Bacillus subtilis. FEMS Microbiol. Lett. 295: 187-194. https://doi.org/10.1111/j.1574-6968.2009.01596.x
- Gupta R, Beg QK, Lorenz P. 2002. Bacterial alkaline proteases: molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 59: 15-32. https://doi.org/10.1007/s00253-002-0975-y
- Gupta RK, Prasad D, Sathesh J, Naidu RB, Kamini NR, Palanivel S, Gowthaman MK. 2012. Scale-up of an alkaline protease from Bacillus pumilus MTCC 7514 utilizing fish meal as a sole source of nutrients. J. Microbiol. Biotechnol. 22: 1230-1236. https://doi.org/10.4014/jmb.1203.03021
- Handtke S, Volland S, Methling K, Albrecht D, Becher D, Nehls J, et al. 2014. Cell physiology of the biotechnological relevant bacterium Bacillus pumilus - an omics-based approach. J. Biotechnol. 192: 204-214. https://doi.org/10.1016/j.jbiotec.2014.08.028
- Huang Q, Peng Y, Li X, Wang H, Zhang Y. 2003. Purification and characterization of an extracellular alkaline serine protease with dehairing function from Bacillus pumilus. Curr. Microbiol. 46: 169-173. https://doi.org/10.1007/s00284-002-3850-2
- Huang R, Yang Q, Feng H. 2015. Single amino acid mutation alters thermostability of the alkaline protease from Bacillus pumilus: thermodynamics and temperature dependence. Acta Biochim. Biophs. Sin. 47: 98-105. https://doi.org/10.1093/abbs/gmu120
- Jaouadi NZ, Jaouadi B, Hlima HB, Rekik H, Belhoul M, Hmidi M, et al. 2014. Probing the crucial role of Leu31 and Thr33 of the Bacillus pumilus CBS alkaline protease in substrate recognition and enzymatic depilation of animal hide. PLoS One 9: e108367. https://doi.org/10.1371/journal.pone.0108367
- Jayakumar R, Jayashree S, Annapurna B, Seshadri S. 2012. Characterization of thermostable serine alkaline protease from an alkaliphilic strain Bacillus pumilus MCAS8 and its applications. Appl. Biochem. Biotechnol. 168: 1849-1866. https://doi.org/10.1007/s12010-012-9902-6
- Kho CW, Park SG, Cho S, Lee DH, Myung PK, Park BC. 2005. Confirmation of Vpr as a fibrinolytic enzyme present in extracellular proteins of Bacillus subtilis. Protein Expr. Purif. 39: 1-7. https://doi.org/10.1016/j.pep.2004.08.008
-
Kim HK, Choi HJ, Kim MH, Sohn CB, Oh TK. 2002. Expression and characterization of
$Ca^{2+}$ -independent lipase from Bacillus pumilus B26. Biochim. Biophys. Acta 1583: 205-212. https://doi.org/10.1016/S1388-1981(02)00214-7 - Klug-Santner BG, Schnitzhofer W, Vrsanska M, Weber J, Agrawal PB, Nierstrasz VA, Guebitz GM. 2006. Purification and characterization of a new bioscouring pectate lyase from Bacillus pumilus BK2. J. Biotechnol. 121: 390-401. https://doi.org/10.1016/j.jbiotec.2005.07.019
- Kobayashi K, Sudiarta IP, Kodama T, Fukushima T, Ara K, Ozaki K, Sekiguchi J. 2012. Identification and characterization of a novel polysaccharide deacetylase C (PdaC) from Bacillus subtilis. J. Biol. Chem. 287: 9765-9776. https://doi.org/10.1074/jbc.M111.329490
- Kuhad RC, Singh A. 2013. Biotechnology for Environmental Management and Resource Recovery. Springer, Berlin/Heidberg.
- Kunst F, Ogasawara N, Moszer I, Albertini A, Alloni G, Azevedo V, et al. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249-256. https://doi.org/10.1038/36786
- Lanigan-Gerdes S, Dooley AN, Faull KF, Lazazzera BA. 2007. Identification of subtilisin, Epr and Vpr as enzymes that produce CSF, an extracellular signalling peptide of Bacillus subtilis. Mol. Microbiol. 65: 1321-1333. https://doi.org/10.1111/j.1365-2958.2007.05869.x
- Lechat P, Hummel L, Rousseau S, Moszer I. 2007. GenoList: an integrated environment for comparative analysis of microbial genomes. Nucleic Acids Res. 36: D469-D474. https://doi.org/10.1093/nar/gkm1042
- Lee SJ, Kim DM, Bae KH, Byun SM, Chung JH. 2000. Enhancement of secretion and extracellular stability of staphylokinase in Bacillus subtilis by wprA gene disruption. Appl. Environ. Microbiol. 66: 476-480. https://doi.org/10.1128/AEM.66.2.476-480.2000
- Manns DC, Churey JJ, Worobo RW. 2012. Functional assignment of YvgO, a novel set of purified and chemically characterized proteinaceous antifungal variants produced by Bacillus thuringiensis SF361. Appl. Environ. Microbiol. 78: 2543-2552. https://doi.org/10.1128/AEM.07727-11
- Manns DC, Churey JJ, Worobo RW. 2014. Nutrientdependent efficacy of the antifungal protein YvgO correlates to cellular proliferation rate in Candida albicans 3153A and Byssochlamys fulva H25. Probiotics Antimicrob. Proteins 6: 198-207. https://doi.org/10.1007/s12602-014-9167-1
- Molina CA, Cana-Roca JF, Osuna A, Vilchez S. 2010. Selection of a Bacillus pumilus strain highly active against Ceratitis capitata (Wiedemann) larvae. Appl. Environ. Microbiol. 76: 1320-1327. https://doi.org/10.1128/AEM.01624-09
- Nguyen HD, Phan T, Schumann W. 2011. Analysis and application of Bacillus subtilis sortases to anchor recombinant proteins on the cell wall. AMB Express 1: 22. https://doi.org/10.1186/2191-0855-1-22
- Page MJ, Di Cera E. 2008. Serine peptidases: classification, structure and function. Cell. Mol. Life Sci. 65: 1220-1236. https://doi.org/10.1007/s00018-008-7565-9
- Paolicchi A, Dominici S, Pieri L, Maellaro E, Pompella A. 2002. Glutathione catabolism as a signaling mechanism. Biochem. Pharmacol. 64: 1027-1035. https://doi.org/10.1016/S0006-2952(02)01173-5
- Poorna CA, Prema P. 2006. Production and partial characterization of endoxylanase by Bacillus pumilus using agro industrial residues. Biochem. Eng. J. 32: 106-112. https://doi.org/10.1016/j.bej.2006.09.016
- Rawlings ND, Barrett AJ. 1993. Evolutionary families of peptidases. Biochem. J. 290: 205-218. https://doi.org/10.1042/bj2900205
- Rawlings ND, Waller M, Barrett AJ, Bateman A. 2014. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 42: D503-D509. https://doi.org/10.1093/nar/gkt953
- Schallmey M, Singh A, Ward OP. 2004. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50: 1-17. https://doi.org/10.1139/w03-076
- Shah IM, Dworkin J. 2010. Induction and regulation of a secreted peptidoglycan hydrolase by a membrane Ser/Thr kinase that detects muropeptides. Mol. Microbiol. 75: 1232-1243. https://doi.org/10.1111/j.1365-2958.2010.07046.x
- Shao H, Cao Q, Zhao H, Tan X, Feng H. 2015. Construction of novel shuttle expression vectors for gene expression in Bacillus subtilis and Bacillus pumilus. J. Gen. Appl. Microbiol. 61: 124-131. https://doi.org/10.2323/jgam.61.124
- Sibbald MJ, Ziebandt AK, Engelmann S, Hecker M, de Jong A, Harmsen HJ, et al. 2006. Mapping the pathways to staphylococcal pathogenesis by comparative secretomics. Microbiol. Mol. Biol. Rev. 70: 755-788. https://doi.org/10.1128/MMBR.00008-06
-
Stephenson K, J ensen C, Jorgensen S , Harwood C. 2002. Simultaneous inactivation of the wprA and dltB genes of Bacillus subtilis reduces the yield of
${\alpha}$ -amylase. Lett. Appl. Microbiol. 34: 394-397. https://doi.org/10.1046/j.1472-765X.2002.01106.x - Suzuki T, Tahara Y. 2003. Characterization of the Bacillus subtilis ywtD gene, whose product is involved in gammapolyglutamic acid degradation. J. Bacteriol. 185: 2379-2382. https://doi.org/10.1128/JB.185.7.2379-2382.2003
- Tjalsma H, Antelmann H, Jongbloed JD, Braun PG, Darmon E, Dorenbos R, et al. 2004. Proteomics of protein secretion by Bacillus subtilis: separating the "secrets" of the secretome. Microbiol. Mol. Biol. Rev. 68: 207-233. https://doi.org/10.1128/MMBR.68.2.207-233.2004
- Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM. 2000. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol. Mol. Biol. Rev. 64: 515-547.
- Vollmer W, Joris B, Charlier P, Foster S. 2008. Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol. Rev. 32: 259-286. https://doi.org/10.1111/j.1574-6976.2007.00099.x
- Wang HY, Liu DM, Liu Y, Cheng CF, Ma QY, Huang Q, Zhang YZ. 2007. Screening and mutagenesis of a novel Bacillus pumilus strain producing alkaline protease for dehairing. Lett. Appl. Microbiol. 44: 1-6. https://doi.org/10.1111/j.1472-765X.2006.02039.x
- Westers L, Westers H, Quax WJ. 2004. Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim. Biophys. Acta 1694: 299-310. https://doi.org/10.1016/j.bbamcr.2004.02.011
- Wu S, Zhu Z, Fu L, Niu B, Li W. 2011. WebMGA: a customizable Web server for fast metagenomic sequence analysis. BMC Genomics 12: 444. https://doi.org/10.1186/1471-2164-12-444
- Yao D, Qu J, Chang P, Tao Y, Yang D. 2012. Production and characterization of alkaline protease from hemoglobindegrading Bacillus pumilus NJM4 to produce fermented blood meal. J. Food Sci. Technol. 49: 626-631. https://doi.org/10.1007/s13197-010-0205-z
- Yu SQ, Gui JH, Wang HY. 2014. Proteome analysis of Bacillus pumilus extracellular proteins by two dimensional electrophoresis and identification of differential proteins under alkaline stress. Chin. J. Appl. Environ. Biol. 2014: 217-222.
- Zhao C-W, Wang H-Y, Zhang Y-Z, Feng H. 2012. Draft genome sequence of Bacillus pumilus BA06, a producer of alkaline serine protease with leather-dehairing function. J. Bacteriol. 194: 6668-6669. https://doi.org/10.1128/JB.01694-12
- Zhou M, Theunissen D, Wels M, Siezen RJ. 2010. LABsecretome: a genome-scale comparative analysis of the predicted extracellular and surface-associated proteins of lactic acid bacteria. BMC Genomics 11: 651. https://doi.org/10.1186/1471-2164-11-651
Cited by
- 김치로부터 단백질 분해 효소활성이 우수한 Bacillus subtilis 균주의 분리 vol.45, pp.1, 2016, https://doi.org/10.4014/mbl.1611.11006
- Transcriptome profiling analysis reveals metabolic changes across various growth phases in Bacillus pumilus BA06 vol.17, pp.None, 2016, https://doi.org/10.1186/s12866-017-1066-7
- The Practical Potential of Bacilli and Their Enzymes for Industrial Production vol.11, pp.None, 2020, https://doi.org/10.3389/fmicb.2020.01782
- A highly efficient protein degradation system in Bacillus sp. CN2: a functional-degradomics study vol.105, pp.2, 2021, https://doi.org/10.1007/s00253-020-11083-z