참고문헌
- Ahearn DG, Roth FJ Jr, Meyers SP. 1968. Ecology and characterization of yeasts from aquatic regions of South Florida. Mar. Biol. 1: 291-308. https://doi.org/10.1007/BF00360780
- Bieleski RL. 1982. Sugar alcohols, pp. 158-192. In Loewus F, Tanner W (eds.). Plant Carbohydrates I. Springer, Berlin-Heidelberg.
- Burgaud G, Arzur D, Durand L, Cambon-Bonavita M-A, Barbier G. 2010. Marine culturable yeasts in deep-sea hydrothermal vents: species richness and association with fauna. FEMS Microbiol. Ecol. 73: 121-133.
- Cadete R, Fonseca C, Rosa C. 2014. Novel yeast strains from Brazilian biodiversity: biotechnological applications in lignocellulose conversion into biofuels, pp. 255-279. In da Silva SS, Chandel AK (eds.). Biofuels in Brazil. Springer International Publishing.
- Cavka A, Jonsson LJ. 2014. Comparison of the growth of filamentous fungi and yeasts in lignocellulose-derived media. Biocatal. Agric. Biotechnol. 3: 197-204.
- Chi Z, Chi Z, Zhang T, Liu G, Li J, Wang X. 2009. Production, characterization and gene cloning of the extracellular enzymes from the marine-derived yeasts and their potential applications. Biotechnol. Adv. 27: 236-255. https://doi.org/10.1016/j.biotechadv.2009.01.002
- Dinesh Kumar S, Karthik L, Gaurav Kumar, Bhaskara Rao KV. 2011. Biosynthesis of silver nanoparticles from marine yeast and their antimicrobial activity against multidrug resistant pathogens. Pharmacol. Online 3: 1100-1111.
- Fell JW. 2001. Collection and identification of marine yeasts, pp. 347-356. Methods in Microbiology. Academic Press, Burlington.
- Fell J, Statzell-Tallman A, Scorzetti G, Gutierrez M. 2011. Five new species of yeasts from fresh water and marine habitats in the Florida Everglades. Antonie Van Leeuwenhoek 99: 533-549. https://doi.org/10.1007/s10482-010-9521-6
- Foschino R, Gallina S, Andrighetto C, Rossetti L, Galli A. 2004. Comparison of cultural methods for the identification and molecular investigation of yeasts from sourdoughs for Italian sweet baked products. FEMS Yeast Res. 4: 609-618. https://doi.org/10.1016/j.femsyr.2003.12.006
- Greetham D, Wimalasena T, Kerruish DWM, Brindley S, Ibbett RN, Linforth RL, et al. 2014. Development o f a phenotypic assay for characterisation of ethanologenic yeast strain sensitivity to inhibitors released from lignocellulosic feedstocks. J. Ind. Microbiol. Biotechnol. 41: 931-945. https://doi.org/10.1007/s10295-014-1431-6
- Guo F-J, Ma Y, Xu H-M, Wang X-H, Chi Z-M. 2013. A novel killer toxin produced by the marine-derived yeast Wickerhamomyces anomalus YF07b. Antonie Van Leeuwenhoek 103: 737-746. https://doi.org/10.1007/s10482-012-9855-3
- Jones EBG, Suetrong S, Sakayaroj J, Bahkali A, Abdel-Wahab MA, Boekhout T, Pang KL. 2015. Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Diver. 73: 1-72. https://doi.org/10.1007/s13225-015-0339-4
- Karsten U, Barrow KD, Nixdorf O, West JA, King RJ. 1997. Characterization of mannitol metabolism in the mangrove red alga Caloglossa leprieurii (Montagne) J.Agardh. Planta 201: 173-178.
- Khambhaty Y, Upadhyay D, Kriplani Y, Joshi N, Mody K, Gandhi MR. 2013. Bioethanol from macroalgal biomass: utilization of marine yeast for production of the same. Bioenergy Res. 6: 188-195. https://doi.org/10.1007/s12155-012-9249-4
- Kohlmeyer J, Kohlmeyer E. 1979. Yeasts, pp. 556-606. In Kohlmeyer J, Kohlmeyer E (eds.). Marine Mycology Academic Press, New York.
- Koop K, Carter RA, Newell RC. 1982. Mannitol-fermenting bacteria as evidence for export from kelp beds. Limnol. Oceanogr. 27: 950-954. https://doi.org/10.4319/lo.1982.27.5.0950
- Kumar S, Gupta R, Kumar G, Sahoo D, Kuhad RC. 2013. Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresour. Technol. 135: 150-156. https://doi.org/10.1016/j.biortech.2012.10.120
- Kurtzman CP, Fell J. 2006. Yeast systematics and phylogeny- implications of molecular identification methods for studies in e cology, pp. 11-30. In Peter G, Rosa C (eds.). Biodiversity and Ecophysiology of Yeasts. Springer, Berlin-Heidelberg.
- Kurtzman C, Piskur J. 2006. Taxonomy and phylogenetic diversity among the yeasts, pp. 29-46. In Sunnerhagen P, Piskur J (eds.). Comparative Genomics. Springer, Berlin-Heidelberg.
- Kurtzman CP, Mateo RQ, Kolecka A, Theelen B, Robert V, Boekhout T. 2015. Advances in yeast systematics and phylogeny and their use as predictors of biotechnologically important metabolic pathways. FEMS Yeast Res. 15: fov050. https://doi.org/10.1093/femsyr/fov050
- Kutty SN. 2009. Marine yeasts from the slope sediments of Arabian Sea and Bay of Bengal. PhD. Cochin University of Science and Technology, India.
- Kutty SN, Philip R. 2008. Marine yeasts - a review. Yeast 25: 465-483. https://doi.org/10.1002/yea.1599
- Lin CSK, Luque R, Clark JH, Webb C, Du C. 2011. A seawater-based biorefining strategy for fermentative production and chemical transformations of succinic acid. Energy Environ. Sci. 4: 1471-1479. https://doi.org/10.1039/c0ee00666a
- Mitchell TG, White TJ, Taylor JW. 1992. Comparison of 5.8S ribosomal DNA sequences among the basidiomycetous yeast genera Cystofilobasidium, Filobasidium and Filobasidiella. J. Med. Vet. Mycol. 30: 207-218. https://doi.org/10.1080/02681219280000271
- Nagahama T, Hamamoto M, Nakase T, Horikoshi K. 1999. Kluyveromyces nonfermentans sp. nov., a new yeast species isolated from the deep sea. Int. J. Syst. Bacteriol. 49: 1899-1905. https://doi.org/10.1099/00207713-49-4-1899
- Nasr NF, Zaky AS, Daw ZY. 2010. Microbiological quality of active dry and compressed baker's yeast sold in Egypt. J. Pure Appl. Microbiol. 4: 455-462.
- Obara N, Oki N, Okai M, Ishida M, Urano N. 2015. Development of a simple isolation method for yeast Saccharomyces cerevisiae with high fermentative activities from coastal waters. Stud. Sci. Technol. 4: 71-76.
- Oshoma CE, Greetham D, Louis EJ, Smart KA, Phister TG, Powell C, Du C. 2015. Screening of non-Saccharomyces cerevisiae strains for tolerance to formic acid in bioethanol fermentation. PLoS One 10: e0135626. https://doi.org/10.1371/journal.pone.0135626
- Ostergaard S, Olsson L, Johnston M, Nielsen J. 2000. Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network. Nat. Biotechnol. 18: 1283-1286. https://doi.org/10.1038/82400
- Pincus DH, Orenga S, Chatellier S. 2007. Yeast identification - past, present, and future methods. Med. Mycol. 45: 97-121. https://doi.org/10.1080/13693780601059936
- Praphailong W, Van Gestel M, Fleet GH, Heard GM. 1997. Evaluation of the Biolog system for the identification of food and beverage yeasts. Lett. Appl. Microbiol. 24: 455-459. https://doi.org/10.1046/j.1472-765X.1997.00057.x
- Reed RH, Davison IR, Chudek JA, Foster R. 1985. The osmotic role of mannitol in the Phaeophyta: an appraisal. Phycologia 24: 35-47. https://doi.org/10.2216/i0031-8884-24-1-35.1
- Rhishipal R , Philip R. 1998. Selection of m arine yeasts for the generation of single cell protein from prawn-shell waste. Bioresour. Technol. 65: 255-256. https://doi.org/10.1016/S0960-8524(97)00179-X
- Sarkar S, Pramanik A, Mitra A, Mukherjee J. 2010. Bioprocessing data for the production of marine enzymes. Mar. Drugs 8: 1323-1372. https://doi.org/10.3390/md8041323
- Seshadri R, Sieburth JM. 1975. Seaweeds as a reservoir of Candida yeasts in inshore waters. Mar. Biol. 30: 105-117. https://doi.org/10.1007/BF00391585
- Silvi S, Barghini P, Aquilanti A, Juarez-Jimenez B, Fenice M. 2013. Physiologic and metabolic characterization of a new marine isolate (BM39) of Pantoea sp. producing high levels of exopolysaccharide. Microb. Cell Fact. 12:10. https://doi.org/10.1186/1475-2859-12-10
- Urano N, Yamazaki M, Ueno R. 2001. Distribution of halotolerant and/or fermentative yeasts in aquatic environments. J. Tokyo Univ. Fish 87: 7.
- Wang L, Chi Z, Wang X, Ju L, Chi Z, Guo N. 2008. Isolation and characterization of Candida membranifaciens subsp. flavinogenie W14-3, a novel riboflavin-producing marine yeast. Microbiol. Res. 163: 255-266. https://doi.org/10.1016/j.micres.2007.12.001
- Wenger JW, Schwartz K, Sherlock G. 2010. Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae. PLoS Genet. 6: e1000942. https://doi.org/10.1371/journal.pgen.1000942
- White T, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 315-322. In Innis M, Gelfand D, Shinsky J, White T (eds.). PCR Protocols: A Guide to Methods and Applications. Academic Press, New York.
- White WL, Coveny AH, Robertson J, Clements KD. 2010. Utilisation of mannitol by temperate marine herbivorous fishes. J. Exp. Mar. Biol. Ecol. 391: 50-56. https://doi.org/10.1016/j.jembe.2010.06.007
- Wickerham LJ. 1951. Taxonomy of yeasts. US Dept. Agric. Tech. Bull. 1029: 1-56.
- Wimalasena TT, Greetham D, Marvin ME, Liti G, Chandelia Y, Hart A, et al. 2014. Phenotypic characterisation of Saccharomyces spp. yeast for tolerance to stresses encountered during fermentation of lignocellulosic residues to produce bioethanol. Microb. Cell Fact. 13: 47. https://doi.org/10.1186/1475-2859-13-47
- Zaki AM, Wimalasena TT, Greetham D. 2014. Phenotypic characterisation of Saccharomyces spp. for tolerance to 1-butanol. J. Ind. Microbiol. Biotechnol. 41: 1627-1636. https://doi.org/10.1007/s10295-014-1511-7
- Zaky AS, Du C. 2014. The isolation of novel marine yeasts; a new procedure. 31(Suppl. 132). New Biotechnol. DOI: 10.1016/j.nbt.2014.05.1939.
- Zaky AS, Tucker GA, Daw ZY, Du C. 2014. Marine yeast isolation and industrial application. FEMS Yeast Res. 14: 813-825. https://doi.org/10.1111/1567-1364.12158
피인용 문헌
- The establishment of a marine focused biorefinery for bioethanol production using seawater and a novel marine yeast strain vol.8, pp.None, 2018, https://doi.org/10.1038/s41598-018-30660-x
- Exploring the tolerance of marine yeast to inhibitory compounds for improving bioethanol production vol.3, pp.6, 2019, https://doi.org/10.1039/c9se00029a
- Never Change a Brewing Yeast? Why Not, There Are Plenty to Choose From vol.11, pp.None, 2016, https://doi.org/10.3389/fgene.2020.582789
- Production, purification, characterization, and biological properties of Rhodosporidium paludigenum polysaccharide vol.16, pp.1, 2016, https://doi.org/10.1371/journal.pone.0246148
- Occurrence and Distribution of Strains of Saccharomyces cerevisiae in China Seas vol.9, pp.6, 2016, https://doi.org/10.3390/jmse9060590
- A Preliminary Life Cycle Analysis of Bioethanol Production Using Seawater in a Coastal Biorefinery Setting vol.9, pp.8, 2016, https://doi.org/10.3390/pr9081399
- Introducing a Marine Biorefinery System for the Integrated Production of Biofuels, High-Value-Chemicals, and Co-Products: A Path Forward to a Sustainable Future vol.9, pp.10, 2016, https://doi.org/10.3390/pr9101841
- Biodiversity and Enzyme Activity of Marine Fungi with 28 New Records from the Tropical Coastal Ecosystems in Vietnam vol.49, pp.6, 2016, https://doi.org/10.1080/12298093.2021.2008103