DOI QR코드

DOI QR Code

Improved NADPH Regeneration for Fungal Cytochrome P450 Monooxygenase by Co-Expressing Bacterial Glucose Dehydrogenase in Resting-Cell Biotransformation of Recombinant Yeast

  • Jeon, Hyunwoo (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Durairaj, Pradeepraj (Korean Lichen Research Institute, Sunchon National University) ;
  • Lee, Dowoo (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Ahsan, Md Murshidul (School of Biotechnology, Yeungnam University) ;
  • Yun, Hyungdon (Department of Bioscience and Biotechnology, Konkuk University)
  • Received : 2016.06.01
  • Accepted : 2016.09.05
  • Published : 2016.12.28

Abstract

Fungal cytochrome P450 (CYP) enzymes catalyze versatile monooxygenase reactions and play a major role in fungal adaptations owing to their essential roles in the production avoid metabolites critical for pathogenesis, detoxification of xenobiotics, and exploitation avoid substrates. Although fungal CYP-dependent biotransformation for the selective oxidation avoid organic compounds in yeast system is advantageous, it often suffers from a shortage avoid intracellular NADPH. In this study, we aimed to investigate the use of bacterial glucose dehydrogenase (GDH) for the intracellular electron regeneration of fungal CYP monooxygenase in a yeast reconstituted system. The benzoate hydroxylase FoCYP53A19 and its homologous redox partner FoCPR from Fusarium oxysporum were co-expressed with the BsGDH from Bacillus subtilis in Saccharomyces cerevisiae for heterologous expression and biotransformations. We attempted to optimize several bottlenecks concerning the efficiency of fungal CYP-mediated whole-cell-biotransformation to enhance the conversion. The catalytic performance of the intracellular NADPH regeneration system facilitated the hydroxylation of benzoic acid to 4-hydroxybenzoic acid with high conversion in the resting-cell reaction. The FoCYP53A19+FoCPR+BsGDH reconstituted system produced 0.47 mM 4-hydroxybenzoic acid (94% conversion) in the resting-cell biotransformations performed in 50 mM phosphate buffer (pH 6.0) containing 0.5 mM benzoic acid and 0.25% glucose for 24 h at $30^{\circ}C$. The "coupled-enzyme" system can certainly improve the overall performance of NADPH-dependent whole-cell biotransformations in a yeast system.

Keywords

References

  1. Berne S, Kovačič L, Sova M, Kraševec N, Gobec S, Križaj I, Komel R. 2015. Benzoic acid derivatives with improved antifungal activity: design, synthesis, structure-activity relationship (SAR) and CYP53 docking studies. Bioorg. Med. Chem. 23: 4264-4276. https://doi.org/10.1016/j.bmc.2015.06.042
  2. Berne S, Podobnik B, Zupanec N, Novak M, Kraševec N, Turk S, et al. 2012. Virtual screening yields inhibitors of novel antifungal drug target, benzoate 4-monooxygenase. J. Chem. Inf. Model. 52: 3053-3063. https://doi.org/10.1021/ci3004418
  3. Bernhardt R, Urlacher VB. 2014. Cytochromes P450 as promising catalysts for biotechnological application: chances and limitations. Appl. Microbiol. Biotechnol. 98: 6185-6203. https://doi.org/10.1007/s00253-014-5767-7
  4. Bjerrum J, Schwarzenbach G, Sillén LG, Anderegg G, Rasmussen S. 1957. Stability Constants of Metal-ion Complexes, with Solubility Products of Inorganic Substances. Chemical Society, London, UK.
  5. Blackwell M. 2011. The Fungi: 1, 2, 3… 5.1 million species? Am. J. Bot. 98: 426-438. https://doi.org/10.3732/ajb.1000298
  6. Braun A, Geier M, Bühler B, Schmid A, Mauersberger S, Glieder A. 2012. Steroid biotransformations in biphasic systems with Yarrowia lipolytica expressing human liver cytochrome P450 genes. Microb. Cell Fact. 11: 1. https://doi.org/10.1186/1475-2859-11-1
  7. Črešnar B, Petrič Š. 2011. Cytochrome P450 enzymes in the fungal kingdom. Biochim. Biophys. Acta 1814: 29-35. https://doi.org/10.1016/j.bbapap.2010.06.020
  8. Durairaj P, Hur J-S, Yun H. 2016. Versatile biocatalysis of fungal cytochrome P450 monooxygenases. Microb. Cell Fact. 15: 1. https://doi.org/10.1186/s12934-015-0402-6
  9. Durairaj P, Jung E, Park HH, Kim B-G, Yun H. 2015. Comparative functional characterization of a novel benzoate hydroxylase cytochrome P450 of Fusarium oxysporum. Enzyme Microb. Technol. 70: 58-65. https://doi.org/10.1016/j.enzmictec.2014.12.013
  10. Durairaj P, Malla S, Nadarajan SP, Lee P-G, Jung E, Park HH, et al. 2015. Fungal cytochrome P450 monooxygenases of Fusarium oxysporum for the synthesis of ${\omega}$-hydroxy fatty acids in engineered Saccharomyces cerevisiae. Microb. Cell Fact. 14: 1. https://doi.org/10.1186/s12934-014-0183-3
  11. Faber BW, van Gorcom RF, Duine JA. 2001. Purification and characterization of benzoate-para-hydroxylase, a cytochrome P450 (CYP53A1), from Aspergillus niger. Arch. Biochem. Biophys. 394: 245-254. https://doi.org/10.1006/abbi.2001.2534
  12. Harwood CS, Parales RE. 1996. The ${\beta}$-ketoadipate pathway and the biology of self-identity. Annu. Rev. Microbiol. 50: 553-590. https://doi.org/10.1146/annurev.micro.50.1.553
  13. Jawallapersand P, Mashele SS, Kovačič L, Stojan J, Komel R, Pakala SB, et al. 2014. Cytochrome P450 monooxygenase CYP53 family in fungi: comparative structural and evolutionary analysis and its role as a common alternative anti-fungal drug target. PLoS One 9: e107209. https://doi.org/10.1371/journal.pone.0107209
  14. Julsing MK, Cornelissen S, Bühler B, Schmid A. 2008. Hemeiron oxygenases: powerful industrial biocatalysts? Curr. Opin. Chem. Biol. 12: 177-186. https://doi.org/10.1016/j.cbpa.2008.01.029
  15. Korošec B, Sova M, Turk S, Kraševec N, Novak M, Lah L, et al. 2014. Antifungal activity of cinnamic acid derivatives involves inhibition of benzoate 4-hydroxylase (CYP53). J. Appl. Microbiol. 116: 955-966. https://doi.org/10.1111/jam.12417
  16. Lah L, Podobnik B, Novak M, Korošec B, Berne S, Vogelsang M, et al. 2011. The versatility of the fungal cytochrome P450 monooxygenase system is instrumental in xenobiotic detoxification. Mol. Microbiol. 81: 1374-1389. https://doi.org/10.1111/j.1365-2958.2011.07772.x
  17. Lee W-H, Kim M-D, Jin Y-S, Seo J-H. 2013. Engineering of NADPH regenerators in Escherichia coli for enhanced biotransformation. Appl. Microbiol. Biotechnol. 97: 2761-2772. https://doi.org/10.1007/s00253-013-4750-z
  18. Lu Y, Mei L. 2007. Co-expression of P450 BM3 and glucose dehydrogenase by recombinant Escherichia coli and its application in an NADPH-dependent indigo production system. J. Ind. Microbiol. Biotechnol. 34: 247-253. https://doi.org/10.1007/s10295-006-0193-1
  19. Matsuzaki F, Wariishi H. 2005. Molecular characterization of cytochrome P450 catalyzing hydroxylation of benzoates from the white-rot fungus Phanerochaete chrysosporium. Biochem. Biophys. Res. Commun. 334: 1184-1190. https://doi.org/10.1016/j.bbrc.2005.07.013
  20. Moktali V, Park J, Fedorova-Abrams ND, Park B, Choi J, Lee Y-H, Kang S. 2012. Systematic and searchable classification of cytochrome P450 proteins encoded by fungal and oomycete genomes. BMC Genomics 13: 525. https://doi.org/10.1186/1471-2164-13-525
  21. O'Reilly E, Köhler V, Flitsch SL, Turner NJ. 2011. Cytochromes P450 as useful biocatalysts: addressing the limitations. Chem. Commun. 47: 2490-2501. https://doi.org/10.1039/c0cc03165h
  22. Podobnik B, Stojan J, Lah L, Krasevec N, Seliskar M, Rizner TL, et al. 2008. CYP53A15 of Cochliobolus lunatus, a target for natural antifungal compounds. J. Med. Chem. 51: 3480-3486. https://doi.org/10.1021/jm800030e
  23. Rauter M, Kasprzak J, Denter S, Becker K, Baronian K, Bode R, et al. 2014. Reusability of ADH and GDH producing Arxula adeninivorans cells and cell extract for the production of 1-(S)-phenylethanol. J. Mol. Catal. B Enzym. 108: 72-76. https://doi.org/10.1016/j.molcatb.2014.06.008
  24. Schrewe M, Julsing MK, Bühler B, Schmid A. 2013. Wholecell biocatalysis for selective and productive C-O functional group introduction and modification. Chem. Soc. Rev. 42: 6346-6377. https://doi.org/10.1039/c3cs60011d
  25. Siriphongphaew A, Pisnupong P, Wongkongkatep J, Inprakhon P, Vangnai AS, Honda K, et al. 2012. Development of a whole-cell biocatalyst co-expressing P450 monooxygenase and glucose dehydrogenase for synthesis of epoxyhexane. Appl. Microbiol. Biotechnol. 95: 357-367. https://doi.org/10.1007/s00253-012-4039-7
  26. Uppada V, Bhaduri S, Noronha SB. 2014. Cofactor regeneration- an important aspect of biocatalysis. Curr. Sci. India 106: 946957.
  27. van Gorcom RF, van den Hondel CA, Punt PJ. 1998. Cytochrome P450 enzyme systems in fungi. Fungal Genet. Biol. 23: 1-17. https://doi.org/10.1006/fgbi.1997.1021
  28. Xu Z, Jing K, Liu Y, Cen P. 2007. High-level expression of recombinant glucose dehydrogenase and its application in NADPH regeneration. J. Ind. Microbiol. Biotechnol. 34: 83-90.
  29. Yoon SA. 2013. Development of a bioconversion system using Saccharomyces cerevisiae reductase YOR120W and Bacillus subtilis glucose dehydrogenase for chiral alcohol synthesis. J. Microbiol. Biotechnol. 23: 1395-1402. https://doi.org/10.4014/jmb.1305.05030
  30. Zehentgruber D, Dr gan C-A, Bureik M, Lütz S. 2010. Challenges of steroid biotransformation with human cytochrome P450 monooxygenase CYP21 using resting cells of recombinant Schizosaccharomyces pombe. J. Biotechnol. 146: 179-185. https://doi.org/10.1016/j.jbiotec.2010.01.019
  31. Zhang J-D, Li A-T, Yu H-L, Imanaka T, Xu J-H. 2011. Synthesis of optically pure S-sulfoxide by Escherichia coli transformant cells coexpressing the P450 monooxygenase and glucose dehydrogenase genes. J. Ind. Microbiol. Biotechnol. 38: 633-641. https://doi.org/10.1007/s10295-010-0809-3
  32. Zöllner A, Buchheit D, Meyer MR, Maurer HH, Peters FT, Bureik M. 2010. Production of human phase 1 and 2 metabolites by whole-cell biotransformation with recombinant microbes. Bioanalysis 2: 1277-1290. https://doi.org/10.4155/bio.10.80

Cited by

  1. New approaches to NAD(P)H regeneration in the biosynthesis systems vol.34, pp.10, 2016, https://doi.org/10.1007/s11274-018-2530-8
  2. Biosynthesis of Medium- to Long-Chain α,ω-Diols from Free Fatty Acids Using CYP153A Monooxygenase, Carboxylic Acid Reductase, and E. coli Endogenous Aldehyde Reductases vol.8, pp.1, 2016, https://doi.org/10.3390/catal8010004
  3. Modification of N-Terminal Amino Acids of Fungal Benzoate Hydroxylase (CYP53A15) for the Production of p-Hydroxybenzoate and Optimization of Bioproduction Conditions in Escherichia coli vol.28, pp.3, 2016, https://doi.org/10.4014/jmb.1711.11030
  4. Resistance and Proteomic Response of Microalgae to Ionizing Irradiation vol.23, pp.6, 2016, https://doi.org/10.1007/s12257-018-0468-1
  5. Deracemization of Racemic Amines to Enantiopure ( R )‐ and ( S )‐amines by Biocatalytic Cascade Employing ω‐Transaminase and Amine Dehydrogenase vol.11, pp.7, 2016, https://doi.org/10.1002/cctc.201900080
  6. Highly efficient synthesis of boldenone from androst-4-ene-3,17-dione by Arthrobacter simplex and Pichia pastoris ordered biotransformation vol.42, pp.6, 2016, https://doi.org/10.1007/s00449-019-02092-y
  7. A highly efficient step-wise biotransformation strategy for direct conversion of phytosterol to boldenone vol.283, pp.None, 2016, https://doi.org/10.1016/j.biortech.2019.03.058
  8. Heterologous coexpression of the benzoate‐para‐hydroxylase CYP53B1 with different cytochrome P450 reductases in various yeasts vol.12, pp.6, 2016, https://doi.org/10.1111/1751-7915.13321
  9. Application of Solanum lycopersicum Glucose-6-phosphate Dehydrogenase to NADPH-generating System for Cytochrome P450 Reactions vol.47, pp.4, 2019, https://doi.org/10.4014/mbl.1905.05008
  10. Global challenges in microplastics: From fundamental understanding to advanced degradations toward sustainable strategies vol.267, pp.None, 2016, https://doi.org/10.1016/j.chemosphere.2020.129275
  11. Hemoprotein Catalyzed Oxygenations: P450s, UPOs, and Progress toward Scalable Reactions vol.1, pp.9, 2016, https://doi.org/10.1021/jacsau.1c00251
  12. Mechanisms and the Engineering Approaches for the Degradation of Microplastics vol.1, pp.11, 2016, https://doi.org/10.1021/acsestengg.1c00216