References
- Berne S, Kovačič L, Sova M, Kraševec N, Gobec S, Križaj I, Komel R. 2015. Benzoic acid derivatives with improved antifungal activity: design, synthesis, structure-activity relationship (SAR) and CYP53 docking studies. Bioorg. Med. Chem. 23: 4264-4276. https://doi.org/10.1016/j.bmc.2015.06.042
- Berne S, Podobnik B, Zupanec N, Novak M, Kraševec N, Turk S, et al. 2012. Virtual screening yields inhibitors of novel antifungal drug target, benzoate 4-monooxygenase. J. Chem. Inf. Model. 52: 3053-3063. https://doi.org/10.1021/ci3004418
- Bernhardt R, Urlacher VB. 2014. Cytochromes P450 as promising catalysts for biotechnological application: chances and limitations. Appl. Microbiol. Biotechnol. 98: 6185-6203. https://doi.org/10.1007/s00253-014-5767-7
- Bjerrum J, Schwarzenbach G, Sillén LG, Anderegg G, Rasmussen S. 1957. Stability Constants of Metal-ion Complexes, with Solubility Products of Inorganic Substances. Chemical Society, London, UK.
- Blackwell M. 2011. The Fungi: 1, 2, 3… 5.1 million species? Am. J. Bot. 98: 426-438. https://doi.org/10.3732/ajb.1000298
- Braun A, Geier M, Bühler B, Schmid A, Mauersberger S, Glieder A. 2012. Steroid biotransformations in biphasic systems with Yarrowia lipolytica expressing human liver cytochrome P450 genes. Microb. Cell Fact. 11: 1. https://doi.org/10.1186/1475-2859-11-1
- Črešnar B, Petrič Š. 2011. Cytochrome P450 enzymes in the fungal kingdom. Biochim. Biophys. Acta 1814: 29-35. https://doi.org/10.1016/j.bbapap.2010.06.020
- Durairaj P, Hur J-S, Yun H. 2016. Versatile biocatalysis of fungal cytochrome P450 monooxygenases. Microb. Cell Fact. 15: 1. https://doi.org/10.1186/s12934-015-0402-6
- Durairaj P, Jung E, Park HH, Kim B-G, Yun H. 2015. Comparative functional characterization of a novel benzoate hydroxylase cytochrome P450 of Fusarium oxysporum. Enzyme Microb. Technol. 70: 58-65. https://doi.org/10.1016/j.enzmictec.2014.12.013
-
Durairaj P, Malla S, Nadarajan SP, Lee P-G, Jung E, Park HH, et al. 2015. Fungal cytochrome P450 monooxygenases of Fusarium oxysporum for the synthesis of
${\omega}$ -hydroxy fatty acids in engineered Saccharomyces cerevisiae. Microb. Cell Fact. 14: 1. https://doi.org/10.1186/s12934-014-0183-3 - Faber BW, van Gorcom RF, Duine JA. 2001. Purification and characterization of benzoate-para-hydroxylase, a cytochrome P450 (CYP53A1), from Aspergillus niger. Arch. Biochem. Biophys. 394: 245-254. https://doi.org/10.1006/abbi.2001.2534
-
Harwood CS, Parales RE. 1996. The
${\beta}$ -ketoadipate pathway and the biology of self-identity. Annu. Rev. Microbiol. 50: 553-590. https://doi.org/10.1146/annurev.micro.50.1.553 - Jawallapersand P, Mashele SS, Kovačič L, Stojan J, Komel R, Pakala SB, et al. 2014. Cytochrome P450 monooxygenase CYP53 family in fungi: comparative structural and evolutionary analysis and its role as a common alternative anti-fungal drug target. PLoS One 9: e107209. https://doi.org/10.1371/journal.pone.0107209
- Julsing MK, Cornelissen S, Bühler B, Schmid A. 2008. Hemeiron oxygenases: powerful industrial biocatalysts? Curr. Opin. Chem. Biol. 12: 177-186. https://doi.org/10.1016/j.cbpa.2008.01.029
- Korošec B, Sova M, Turk S, Kraševec N, Novak M, Lah L, et al. 2014. Antifungal activity of cinnamic acid derivatives involves inhibition of benzoate 4-hydroxylase (CYP53). J. Appl. Microbiol. 116: 955-966. https://doi.org/10.1111/jam.12417
- Lah L, Podobnik B, Novak M, Korošec B, Berne S, Vogelsang M, et al. 2011. The versatility of the fungal cytochrome P450 monooxygenase system is instrumental in xenobiotic detoxification. Mol. Microbiol. 81: 1374-1389. https://doi.org/10.1111/j.1365-2958.2011.07772.x
- Lee W-H, Kim M-D, Jin Y-S, Seo J-H. 2013. Engineering of NADPH regenerators in Escherichia coli for enhanced biotransformation. Appl. Microbiol. Biotechnol. 97: 2761-2772. https://doi.org/10.1007/s00253-013-4750-z
- Lu Y, Mei L. 2007. Co-expression of P450 BM3 and glucose dehydrogenase by recombinant Escherichia coli and its application in an NADPH-dependent indigo production system. J. Ind. Microbiol. Biotechnol. 34: 247-253. https://doi.org/10.1007/s10295-006-0193-1
- Matsuzaki F, Wariishi H. 2005. Molecular characterization of cytochrome P450 catalyzing hydroxylation of benzoates from the white-rot fungus Phanerochaete chrysosporium. Biochem. Biophys. Res. Commun. 334: 1184-1190. https://doi.org/10.1016/j.bbrc.2005.07.013
- Moktali V, Park J, Fedorova-Abrams ND, Park B, Choi J, Lee Y-H, Kang S. 2012. Systematic and searchable classification of cytochrome P450 proteins encoded by fungal and oomycete genomes. BMC Genomics 13: 525. https://doi.org/10.1186/1471-2164-13-525
- O'Reilly E, Köhler V, Flitsch SL, Turner NJ. 2011. Cytochromes P450 as useful biocatalysts: addressing the limitations. Chem. Commun. 47: 2490-2501. https://doi.org/10.1039/c0cc03165h
- Podobnik B, Stojan J, Lah L, Krasevec N, Seliskar M, Rizner TL, et al. 2008. CYP53A15 of Cochliobolus lunatus, a target for natural antifungal compounds. J. Med. Chem. 51: 3480-3486. https://doi.org/10.1021/jm800030e
- Rauter M, Kasprzak J, Denter S, Becker K, Baronian K, Bode R, et al. 2014. Reusability of ADH and GDH producing Arxula adeninivorans cells and cell extract for the production of 1-(S)-phenylethanol. J. Mol. Catal. B Enzym. 108: 72-76. https://doi.org/10.1016/j.molcatb.2014.06.008
- Schrewe M, Julsing MK, Bühler B, Schmid A. 2013. Wholecell biocatalysis for selective and productive C-O functional group introduction and modification. Chem. Soc. Rev. 42: 6346-6377. https://doi.org/10.1039/c3cs60011d
- Siriphongphaew A, Pisnupong P, Wongkongkatep J, Inprakhon P, Vangnai AS, Honda K, et al. 2012. Development of a whole-cell biocatalyst co-expressing P450 monooxygenase and glucose dehydrogenase for synthesis of epoxyhexane. Appl. Microbiol. Biotechnol. 95: 357-367. https://doi.org/10.1007/s00253-012-4039-7
- Uppada V, Bhaduri S, Noronha SB. 2014. Cofactor regeneration- an important aspect of biocatalysis. Curr. Sci. India 106: 946957.
- van Gorcom RF, van den Hondel CA, Punt PJ. 1998. Cytochrome P450 enzyme systems in fungi. Fungal Genet. Biol. 23: 1-17. https://doi.org/10.1006/fgbi.1997.1021
- Xu Z, Jing K, Liu Y, Cen P. 2007. High-level expression of recombinant glucose dehydrogenase and its application in NADPH regeneration. J. Ind. Microbiol. Biotechnol. 34: 83-90.
- Yoon SA. 2013. Development of a bioconversion system using Saccharomyces cerevisiae reductase YOR120W and Bacillus subtilis glucose dehydrogenase for chiral alcohol synthesis. J. Microbiol. Biotechnol. 23: 1395-1402. https://doi.org/10.4014/jmb.1305.05030
- Zehentgruber D, Dr gan C-A, Bureik M, Lütz S. 2010. Challenges of steroid biotransformation with human cytochrome P450 monooxygenase CYP21 using resting cells of recombinant Schizosaccharomyces pombe. J. Biotechnol. 146: 179-185. https://doi.org/10.1016/j.jbiotec.2010.01.019
- Zhang J-D, Li A-T, Yu H-L, Imanaka T, Xu J-H. 2011. Synthesis of optically pure S-sulfoxide by Escherichia coli transformant cells coexpressing the P450 monooxygenase and glucose dehydrogenase genes. J. Ind. Microbiol. Biotechnol. 38: 633-641. https://doi.org/10.1007/s10295-010-0809-3
- Zöllner A, Buchheit D, Meyer MR, Maurer HH, Peters FT, Bureik M. 2010. Production of human phase 1 and 2 metabolites by whole-cell biotransformation with recombinant microbes. Bioanalysis 2: 1277-1290. https://doi.org/10.4155/bio.10.80
Cited by
- New approaches to NAD(P)H regeneration in the biosynthesis systems vol.34, pp.10, 2016, https://doi.org/10.1007/s11274-018-2530-8
- Biosynthesis of Medium- to Long-Chain α,ω-Diols from Free Fatty Acids Using CYP153A Monooxygenase, Carboxylic Acid Reductase, and E. coli Endogenous Aldehyde Reductases vol.8, pp.1, 2016, https://doi.org/10.3390/catal8010004
- Modification of N-Terminal Amino Acids of Fungal Benzoate Hydroxylase (CYP53A15) for the Production of p-Hydroxybenzoate and Optimization of Bioproduction Conditions in Escherichia coli vol.28, pp.3, 2016, https://doi.org/10.4014/jmb.1711.11030
- Resistance and Proteomic Response of Microalgae to Ionizing Irradiation vol.23, pp.6, 2016, https://doi.org/10.1007/s12257-018-0468-1
- Deracemization of Racemic Amines to Enantiopure ( R )‐ and ( S )‐amines by Biocatalytic Cascade Employing ω‐Transaminase and Amine Dehydrogenase vol.11, pp.7, 2016, https://doi.org/10.1002/cctc.201900080
- Highly efficient synthesis of boldenone from androst-4-ene-3,17-dione by Arthrobacter simplex and Pichia pastoris ordered biotransformation vol.42, pp.6, 2016, https://doi.org/10.1007/s00449-019-02092-y
- A highly efficient step-wise biotransformation strategy for direct conversion of phytosterol to boldenone vol.283, pp.None, 2016, https://doi.org/10.1016/j.biortech.2019.03.058
- Heterologous coexpression of the benzoate‐para‐hydroxylase CYP53B1 with different cytochrome P450 reductases in various yeasts vol.12, pp.6, 2016, https://doi.org/10.1111/1751-7915.13321
- Application of Solanum lycopersicum Glucose-6-phosphate Dehydrogenase to NADPH-generating System for Cytochrome P450 Reactions vol.47, pp.4, 2019, https://doi.org/10.4014/mbl.1905.05008
- Global challenges in microplastics: From fundamental understanding to advanced degradations toward sustainable strategies vol.267, pp.None, 2016, https://doi.org/10.1016/j.chemosphere.2020.129275
- Hemoprotein Catalyzed Oxygenations: P450s, UPOs, and Progress toward Scalable Reactions vol.1, pp.9, 2016, https://doi.org/10.1021/jacsau.1c00251
- Mechanisms and the Engineering Approaches for the Degradation of Microplastics vol.1, pp.11, 2016, https://doi.org/10.1021/acsestengg.1c00216