References
- Agar OT, Dikmen M, Ozturk N, Yilmaz MA, Temel H, Turkmenoglu FP (2015) Comparative studies on phenolic composition, antioxidant, wound healing and cytotoxic activities of selected Achillea L. species growing in Turkey. Molecules 20: 17976-18000 https://doi.org/10.3390/molecules201017976
- Aprotosoaie AC, Mihai CT, Vochita G, Rotinberg P, Trifan A, Luca SV, Petreus T, Gille E, Miron A (2016) Antigenotoxic and antioxidant activities of a polyphenolic extract from European Dracocephalum moldavica L. Ind Crop Prod 79: 248-257 https://doi.org/10.1016/j.indcrop.2015.11.004
- Bouzaiene NN, Chaabane F, Sassi A, Chekir-Ghedira L, Ghedira K (2016) Effect of apigenin-7-glucoside, genkwanin and naringenin on tyrosinase activity and melanin synthesis in B16F10 melanoma cells. Life Sci 144: 80-85 https://doi.org/10.1016/j.lfs.2015.11.030
- Coombs MRP, Harrison ME, Hoskin DW (2016) Apigenin inhibits the inducible expression of programmed death ligand 1 by human and mouse mammary carcinoma cells. Cancer Lett 380: 424-433 https://doi.org/10.1016/j.canlet.2016.06.023
- Kang GH, Chang EJ, Choi SW (1999) Antioxidative activity of phenolic compounds in roasted safflower (Carthamus tinctorius L.) seeds. J Food Sci Nutr 4: 221-225
- Karim AA, Azlan A, Ismail A, Hashim P, Gani SSA, Zainudin BH, Abdullah NA (2014) Phenolic composition, antioxidant, anti-wrinkles and tyrosinase inhibitory activities of cocoa pod extract. BMC Complement Altern Med 14: 381 https://doi.org/10.1186/1472-6882-14-381
- Karlickova J, Riha M, Filipsky T, Macakova K, Hrdina R, Mladenka P (2016) Antiplatelet effects of flavonoids mediated by inhibition of arachidonic acid based pathway. Planta Med 82: 76-83
- Komape NPM, Aderogba M, Bagla VP, Masoko P, Eloff JN (2014) Antibacterial and anti-oxidant activities of leaf extracts of Combretum vendae (combretecacea) and the isolation of an anti-bacterial compound. Afr J Tradit Complement Altern Med 11: 73-77 https://doi.org/10.4314/ajtcam.v11i5.12
- Lee HJ, Hwang YI, Park E, Choi SU (2011) Antihepatotoxic and antigenotoxic effects of herb tea composed of Chrysanthemum morifolium Ramat. J Food Sci Nutr 40: 78-83
- Lee JH, Park KH, Lee MH, Kim HT, Seo WD, Kim JY, Baek IY, Jang DS, Ha TJ (2013) Identification, characterisation, and quantification of phenolic compounds in the antioxidant activity-containing fraction from the seeds of Korean perilla (Perilla frutescens) cultivars. Food Chem 136: 843-852 https://doi.org/10.1016/j.foodchem.2012.08.057
- Lee JS, Kim HJ, Lee YS (2003) A new anti-HIV flavonoid glucuronide from Chrysanthemum morifolium. Planta Med 69: 859-861 https://doi.org/10.1055/s-2003-43207
- Lee YG, Seo KH, Hong EK, Kim DM, Kim YE, Baek NI (2016) Diels-Alder type adducts from the fruits of Morus alba L. J Appl Biol Chem 59: 91-94 https://doi.org/10.3839/jabc.2016.016
- Malmir M, Gohari AR, Saeidnia S, Silva O (2015) A new bioactive monoterpene-flavonoid from Satureja khuzistanica, Fitoterapia 105: 107-112 https://doi.org/10.1016/j.fitote.2015.06.012
- Ministry of Agriculture, Food and Rural Affairs (2014) 2013 Flower Cultivation Status. Ministry of Agriculture, Food and Rural Affairs: 11-1543000-000108-10
- Miyazawa M, Hisama M (2003) Antimutagenic activity of flavonoids from Chrysanthemum morifolium. Biosci Biotechnol Biochem 67: 2091-2099 https://doi.org/10.1271/bbb.67.2091
- Mohamed NH (2010) Anticancer activity of Marrubium alysson L. and its phenolic constituents. Recent Progress in Medicinal Plants 27: 185-193
- Semwal RB, Semwal DK (2012) Analgesic and anti-inflammatory activities of extracts and fatty acids from Celtis australis L NPJ 2: 323-327 https://doi.org/10.2174/2210315511202040323
- Tavares F, Costa G, Francisco V, Liberal J, Figueirinha A, Lopes MC, Cruz MT, Batista MT (2014) Cymbopogon citratus industrial waste as a potential source of bioactive compounds. J Sci Food Agric 95: 2652-2659
- Thanigaimalai P, Hoang TAL, Lee KC, Bang SC, Sharma VK, Yun CY, Roh E, Hwang BY, Kim Y, Jung SH (2010) Structural requirement(s) of Nphenylthioureas and benzaldehyde thiosemicarbazones as inhibitors of melanogenesis in melanoma B 16 cells. Bioorg Med Chem Lett 20: 2991-2993 https://doi.org/10.1016/j.bmcl.2010.02.067
- Wang G, Zhao Zl, Xue P, Ma F, Zhang D, Wang N, Li M (2015) Chemical constituents from flowers of Scabiosa tschilliensis. Zhongguo Zhong Yao Za Zhi 40: 807-813
- Wang Z, Gong Y, Zeng Dl, Chen L, Lin G, Huang C, Sun W, Chen MC, Hu G, Chen R (2016) Inhibitory effect of apigenin on losartan metabolism and cyp2c9 activity in vitro. Pharmacology 98: 183-189 https://doi.org/10.1159/000446808
- Xiang ZB, Liu XY, Heng LS, Chen YW (2013) Chemical constituents from n-butanol extract of Rabdosia japonica var. glaucocalyx. Asian J Chem 136: 843-852
- Xie Y, Qu J, Wang Q, Wang Y, Yoshikawa M, Yuan D (2012) Comparative Evaluation of Cultivars of Chrysanthemum morifolium Flowers by HPLC-DAD-ESI/MS Analysis and Antiallergic Assay. J Agr Food Chem 60: 12574-12583 https://doi.org/10.1021/jf304080v
- Xie YY, Yuan D, Yang JY, Wang LH, Wu CF (2009) Cytotoxic activity of flavonoids from the flowers of Chrysanthemum morifolium on human colon cancer Colon205 cell. J Asian Nat Prod Res 11: 771-778 https://doi.org/10.1080/10286020903128470
- Yadav P, Yadava RN (2013) Antioxidant activity of a new flavone glycoside from the seeds of Albizzia odoratissima Benth. Int J of Phyto Pharm 3: 81-85
- Yu ML, Guo YL, Wang JM, Wang CM, Wang AH, Zhang XM, Tu YY, Bai MC (2015) The risk of flavonoids utilization in the anti-tumor therapy. Lat Am J Pharm 34: 627-630
- Yuan J, Hao LJ, Wu G, Wang S, Duan J, Xie GY, Qin MJ (2015) Effects of drying methods on the phytochemicals contents and antioxidant properties of chrysanthemum flower heads harvested at two developmental stages. J Funct Foods 19: 786-795 https://doi.org/10.1016/j.jff.2015.10.008
- Zheng C, Dong Q, Du Z, Wang P, Ding K (2015) Structural elucidation of a polysaccharide from Chrysanthemum morifolium flowers with antiangiogenic activity. Int J Biol Macromol 79: 674-680 https://doi.org/10.1016/j.ijbiomac.2015.04.026
Cited by
- vol.61, pp.2, 2018, https://doi.org/10.3839/jabc.2018.019
- Flowers vol.39, pp.5, 2018, https://doi.org/10.1002/bkcs.11451
- Tyrosinase Inhibition Activity of Monoterpene Glucosides From Brugmansia arborea Flowers vol.14, pp.7, 2019, https://doi.org/10.1177/1934578x19863503