DOI QR코드

DOI QR Code

Downregulation of fungal cytochrome c peroxidase expression by antifungal quinonemethide triterpenoids

  • Seo, Woo-Duck (National Institute of Crop Science, Rural Development Administration) ;
  • Lee, Dong-Yeol (Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Park, Ki Hun (Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kim, Jin-Hyo (Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University)
  • Received : 2016.05.23
  • Accepted : 2016.06.29
  • Published : 2016.12.31

Abstract

To handle the development of antifungal drug resistance, the development of new structural modules and new modes of action for antifungals have been highlighted recently. Here, the antifungal activity of quinonemethidal triterpenoids such as celastrol, dihydrocelastrol, iguestein, pristimerin, and tingenone isolated from Tripterygium regelii were identified (MIC $0.269-19.0{\mu}M$). C. glabrata was the most susceptible to quinonemethide among the tested fungi. Furthermore, quinonemethide suppressed cyctochrome c peroxidase expression dramatically, decreasing fungal viability caused by the accumulation of hydrogen peroxide. Thus, cyctochrome c peroxidase downregulation of quinonemethide may be a key mode of action for antifungals.

Keywords

References

  1. Allison AC, Cacabelos R, Lombardi VR, Alvarez XA, Vigo C (2001) Celastrol, a potent antioxidant and anti-inflammatory drug, as a possible treatment for Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 25: 1341-1357 https://doi.org/10.1016/S0278-5846(01)00192-0
  2. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  3. Brinker AM, Ma J, Lipsky PE, Raskin I (2007) Medicinal chemistry and pharmacology of genus Tripterygium (Celastraceae). Phytochem 68: 732-766 https://doi.org/10.1016/j.phytochem.2006.11.029
  4. Byun JY, Kim MJ, Eum DY, Yoon CH, Seo WD, Park KH, Hyun JW, Lee YS, Yoon MY, Lee SJ (2009) Reactive oxygen species-dependent activation of Bax and poly (ADP-ribose) polymerase-1 is required for mitochondrial cell death induced by triterpenoid pristimerin in human cervical cancer cells. Mol Pharmacol 76: 734-744 https://doi.org/10.1124/mol.109.056259
  5. Cox GM, Harrison TS, McDade HC, Taborda CP, Heinrich G, Casadevall A, Perfect JR (2003) Superoxide dismutase influences the virulence of Cryptococcus neoformans by affecting growth within macrophages. Infect Immun 71: 173-180 https://doi.org/10.1128/IAI.71.1.173-180.2003
  6. Do E, Hu G, Caza M, Oliveira D, Kronstad JW, Jung WH (2015) Leu1 plays a role in iron metabolism and is required for virulence in Cryptococcus neoformans. Fungal Genet Biol 75: 11-19 https://doi.org/10.1016/j.fgb.2014.12.006
  7. Dos Santos VA, Dos Santos DP, Castro-Gamboa I, Zanoni MV, Furlan M (2010) Evaluation of antioxidant capacity and synergistic associations of quinonemethide triterpenes and phenolic substances from Maytenus ilicifolia (Celastraceae). Molecules 15: 6956-6973 https://doi.org/10.3390/molecules15106956
  8. Estevinho ML, Afonso SE, Feas X (2011) Antifungal effect of lavender honey against Candida albicans, Candida krusei and Cryptococcus neoformans. J Food Sci Technol-Mysore 48: 640-643 https://doi.org/10.1007/s13197-011-0243-1
  9. Gao JM, Wu WJ, Zhang JW, Konishi Y (2007) The dihydro-beta-agarofuran sesquiterpenoids. Nat Prod Rep 24: 1153-1189 https://doi.org/10.1039/b601473a
  10. Gassmann M, Grenacher B, Rohde B, Vogel J (2009) Quantifying Western blots: pitfalls of densitometry. Electrophoresis 30: 1845-1855 https://doi.org/10.1002/elps.200800720
  11. Giles SS, Perfect JR, Cox GM (2005) Cytochrome c peroxidase contributes to the antioxidant defense of Cryptococcus neoformans. Fungal Genet Biol 42: 20-29 https://doi.org/10.1016/j.fgb.2004.09.003
  12. Heitman J, Lin XR (2006) The biology of the Cryptococcus neoformans species complex. Ann Rev Microbiol 60: 69-105 https://doi.org/10.1146/annurev.micro.60.080805.142102
  13. Kim JH, Lee HO, Cho YJ, Kim J, Chun J, Choi J, Lee Y, Jung WH (2014) A vanillin derivative causes mitochondrial dysfunction and triggers oxidative stress in Cryptococcus neoformans. PLoS One 9: e89122 https://doi.org/10.1371/journal.pone.0089122
  14. Luo DQ, Wang H, Tian X, Shao HJ, Liu JK (2005) Antifungal properties of pristimerin and celastrol isolated from Celastrus hypoleucus. Pest Manag Sci 61: 85-90 https://doi.org/10.1002/ps.953
  15. Martins D, Kathiresan M, English AM (2013) Cytochrome c peroxidase is a mitochondrial heme-based H2O2 sensor that modulates antioxidant defense. Free Radic Biol Med 65: 541-551 https://doi.org/10.1016/j.freeradbiomed.2013.06.037
  16. Narasipura SD, Ault JG, Behr MJ, Chaturvedi V, Chaturvedi S (2003) Characterization of Cu, Zn superoxide dismutase (SOD1) gene knockout mutant of Cryptococcus neoformans var. gattii: role in biology and virulence. Mol Microbiol 47: 1681-1694 https://doi.org/10.1046/j.1365-2958.2003.03393.x
  17. Narasipura SD, Chaturvedi V, Chaturvedi S (2005) Characterization of Cryptococcus neoformans variety gattii SOD2 reveals distinct roles of the two superoxide dismutases in fungal biology and virulence. Mol Microbiol 55: 1782-1800 https://doi.org/10.1111/j.1365-2958.2005.04503.x
  18. Pasqua G, Tocci N, Simonetti G, D'Auria FD, Panella S, Palamara AT, Valletta A, Pasqua G (2011) Root cultures of Hypericum perforatum subsp. angustifolium elicited with chitosan and production of xanthone-rich extracts with antifungal activity. Appl Microbiol Biotech 91: 977-987 https://doi.org/10.1007/s00253-011-3303-6
  19. Ryu YB, Park SJ, Kim YM, Lee JY, Seo WD, Chang JS, Park KH, Rho MC, Lee WS (2010) SARS-CoV 3CLpro inhibitory effects of quinonemethide triterpenes from Tripterygium regelii. Bioorg Med Chem Lett 20: 1873-1876 https://doi.org/10.1016/j.bmcl.2010.01.152
  20. Seo HR, Seo WD, Pyun BJ, Lee BW, Jin YB, Park KH, Seo EK, Lee YJ, Lee YS (2011) Radiosensitization by celastrol is mediated by modification of antioxidant thiol molecules. Chem Biol Interact 193: 34-42 https://doi.org/10.1016/j.cbi.2011.04.009
  21. Su XH, Zhang ML, Zhan WH, Huo CH, Shi QW, Gu YC, Kiyota H (2009) Chemical and pharmacological studies of the plants from genus Celastrus. Chem Biodivers 6: 146-161 https://doi.org/10.1002/cbdv.200700403
  22. Wang C, Shi C, Yang X, Yang M, Sun H, Wang C (2014) Celastrol suppresses obesity process via increasing antioxidant capacity and improving lipid metabolism. Eur J Pharmacol 744: 52-58 https://doi.org/10.1016/j.ejphar.2014.09.043
  23. Yu JH, Hamari Z, Han KH, Seo JA, Reyes-Dominquez Y, Scazzocchio C (2004) Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol 41: 973-981 https://doi.org/10.1016/j.fgb.2004.08.001

Cited by

  1. Antimicrobial Activity and Mode of Action of Celastrol, a Nortriterpen Quinone Isolated from Natural Sources vol.10, pp.3, 2016, https://doi.org/10.3390/foods10030591