DOI QR코드

DOI QR Code

An Automatic Rhythm and Melody Composition System Considering User Parameters and Chord Progression Based on a Genetic Algorithm

유전알고리즘 기반의 사용자 파라미터 설정과 코드 진행을 고려한 리듬과 멜로디 자동 작곡 시스템

  • 정재훈 (성균관대학교 전자전기컴퓨터공학과) ;
  • 안창욱 (성균관대학교 컴퓨터공학과)
  • Received : 2015.07.31
  • Accepted : 2015.11.26
  • Published : 2016.02.15

Abstract

In this paper, we propose an automatic melody composition system that can generate a sophisticated melody by adding non-harmony tone in the given chord progression. An overall procedure consists of two steps, which are the rhythm generation and melody generation parts. In the rhythm generation part, we designed new fitness functions for rhythm that can be controlled by a user setting parameters. In the melody generation part, we designed new fitness functions for melody based on harmony theory. We also designed evolutionary operators that are conducted by considering a musical context to improve computational efficiency. In the experiments, we compared four metaheuristics to optimize the rhythm fitness functions: Simple Genetic Algorithm (SGA), Elitism Genetic Algorithm (EGA), Differential Evolution (DE), and Particle Swarm Optimization (PSO). Furthermore, we compared proposed genetic algorithm for melody with the four algorithms for verifying performance. In addition, composition results are introduced and analyzed with respect to musical correctness.

본 논문에서는 주어진 코드 진행에서 비화성음을 활용한 화려한 멜로디를 자동으로 생성하는 새로운 진화적 자동 음악 작곡 시스템을 제안한다. 전체 시스템은 리듬 생성과 멜로디 생성의 두 단계로 나누어지며, 사용자 설정 파라미터로 제어되는 리듬 적합도 평가 함수와 화성학 기반으로 설계된 멜로디 적합도 평가 함수, 그리고 멜로디 최적화 성능 향상을 위해 설계된 음악적 문맥을 고려한 진화연산을 소개한다. 제안하는 리듬 적합도 평가 함수의 최적화에서 표준 유전알고리즘과 엘리티즘이 적용된 유전알고리즘, 차분진화 알고리즘, 그리고 입자군집최적화 알고리즘의 비교 실험을 하였으며, 멜로디 적합도 평가함수 최적화에서 위 4가지 알고리즘과 제안하는 진화연산을 적용한 유전알고리즘과의 비교 실험을 통해 성능을 검증하고, 생성된 멜로디에 대한 음악적 분석을 수행하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. McCormack, Jon, "Creative ecosystems," Computers and Creativity, Springer Berlin Heidelberg, pp. 39-60, 2012.
  2. Biles, John A., "Improvizing with genetic algorithms: GenJam," Evolutionary Computer Music, Springer London, pp. 137-169, 2007.
  3. Dostál, Martin, "Evolutionary Music Composition," Handbook of Optimization, Springer Berlin Heidelberg, pp. 935-964, 2013.
  4. Biles, John A., "Evolutionary computation for musical tasks," Evolutionary computer music, Springer London, pp. 28-51, 2007.
  5. Gartland-Jones, Andrew, and Peter Copley, "The suitability of genetic algorithms for musical composition," Contemporary Music Review, Vol. 22, No. 3, pp. 43-55, 2003. https://doi.org/10.1080/0749446032000150870
  6. Tokui, Nao, and Hitoshi Iba, "Music composition with interactive evolutionary computation," Proceedings of the 3rd international conference on generative art, Vol. 17, No. 2, 2000.
  7. Dostal, Martin. "Genetic Algorithms As a Model of Musical Creativity on Generating of a Human-Like Rhythmic Accompaniment," Computing and Informatics, Vol. 24, No. 3, pp. 321-340, 2012.
  8. Moroni, Artemis, et al., "Vox populi: An interactive evolutionary system for algorithmic music composition," Leonardo Music Journal, Vol. 10, pp. 49-54, Dec. 2000. https://doi.org/10.1162/096112100570602
  9. Matic, Dragan, "A genetic algorithm for composing music," Yugoslav Journal of Operations Research, Vol. 20, No. 1, 2013.
  10. Fitch, W. Tecumseh, and Andrew J. Rosenfeld, "Perception and production of syncopated rhythms," pp. 43-58, 2007.
  11. Poli, Riccardo, James Kennedy, and Tim Blackwell, "Particle swarm optimization," Swarm intelligence, Vol. 1, No. 1, pp. 33-57, 2007. https://doi.org/10.1007/s11721-007-0002-0
  12. Manaris, B., Vaughan, D., Wagner, C., Romero, J., and Davis, R. B., "Evolutionary music and the Zipf-Mandelbrot law: Developing fitness functions for pleasant music," Applications of Evolutionary Computing. Springer Berlin Heidelberg, pp. 522-534, Apr. 2003.
  13. Manaris, B., Roos, P., Machado, P., Krehbiel, D., Pellicoro, L., and Romero, J., "A corpus-based hybrid approach to music analysis and composition," Proceedings of the National Conference on Artificial Intelligence, Vol. 22, No. 1, p. 839, 2007.