DOI QR코드

DOI QR Code

Development of Solid Base Catalyst K2CO3/γ-Al2O3 for the Production of Biodiesel

바이오디젤 생산을 위한 K2CO3/γ-Al2O3 고체염기촉매의 개발

  • Sim, Yeon Ju (Department of Chemical Engineering, The University of Seoul) ;
  • Kim, Jong Hoon (Department of Chemical Engineering, The University of Seoul) ;
  • Kim, Eui Yong (Department of Chemical Engineering, The University of Seoul)
  • 심연주 (서울시립대학교 화학공학과) ;
  • 김종훈 (서울시립대학교 화학공학과) ;
  • 김의용 (서울시립대학교 화학공학과)
  • Received : 2015.02.16
  • Accepted : 2015.04.17
  • Published : 2016.02.01

Abstract

The applications of heterogeneous catalyst have been relatively active area of research in the biodiesel process. These catalysts have the benefit of easy recovery and reusability of the catalyst. The objective of this study is to find out significant effect of calcination temperature on $K_2CO_3/{\gamma}-Al_2O_3$ catalytic activity in the biodiesel formation reaction. As a results, the temperature at which a catalyst was calcined had very important influence on the catalytic activity. The catalytic activity increased up to $600^{\circ}C$, but it severely decreased above the temperature. The reduction of catalyst activity at high temperature would be due to the deduction of the active sites of Al-O-K and $Al-O_2-K$.

바이오디젤 공정에서 비균일상 촉매는 생성물의 회수를 쉽게 하며 촉매를 재사용하는 장점이 있기 때문에 최근 연구가 활발히 진행되고 있다. 본 연구에서는 $K_2CO_3/{\gamma}-Al_2O_3$ 촉매를 이용한 바이오디젤 생성 반응에서 촉매의 소성온도가 반응활성에 미치는 영향을 살펴보았다. 소성온도가 $600^{\circ}C$까지 높아짐에 따라 촉매의 활성이 높아졌으며, 그 이상의 온도에서는 촉매의 활성이 급격히 감소하여 소성온도가 촉매의 활성에 매우 중요한 영향을 주는 것을 확인하였다. 고온에서 이와 같은 활성감소는 Al-O-K와 $Al-O_2-K$인 활성자리의 감소가 원인이었던 것으로 추정되었다.

Keywords

References

  1. Amin, T. K., Amin, N. A. and Mazaheri, H., "A Review on Novel Processes of Biodiesel Productoion from Waste Cooking Oil," Appl. Energy., 104, 683-710(2013). https://doi.org/10.1016/j.apenergy.2012.11.061
  2. Jinlin, X., Tony, E. G. and Alan, C. H., "Effect of Biodiesel on Engine Performance and Emissons," Renew. Sust. Rev. Energ. Rew., 15, 1098-1116(2011). https://doi.org/10.1016/j.rser.2010.11.016
  3. Jeong, D. S., Nam, B. U. and Jeong, Y. J., "Development of Co-Friendly Fuel Oil using Vegetable and Petroleum Oils," Appl. Chem., 13, 157-160(2009).
  4. Choi, J. H., Park, Y. B., Lee, S. H., Cheon, J. K. and Woo, H. C., "The Esterification of Oleic Acid Using Acidic Ionic Liquid Catalysts Immobilized on Silica Gel," Korean Chem. Eng. Res., 48, 583-588(2010).
  5. Lee, J. S. and Park S. C., "Recent Developments and Challenging Issues of Solid Catalysts for Biodiesel Production," Korean Chem. Eng. Res., 48, 10-15(2010).
  6. Buasri, A., Ksapabutr, B., Panapoy, M. and Chaiyut N., "Biodiesel Production from Waste Cooking Palm Oil using Calcium Oxide Supported on Activated Carbon as Catalyst in a Fixed Bed Reactor," Korean J. Chem. Eng., 29(12), 1708-1712(2012). https://doi.org/10.1007/s11814-012-0047-7
  7. Semwal, S., Arora, A. K., Badoni, R. P. and Tuli, D. K., "Biodiesel Production using Heterogeneous Catalysts," Bioresour. Technol., 102, 2151-2161(2011). https://doi.org/10.1016/j.biortech.2010.10.080
  8. Jantzen, C. M., Brown, K. G. and Pickett, J. B., "Durable Glass for Thousands of Years," Int. J. Appl. Glass Sci., 1, 1-50(2010). https://doi.org/10.1111/j.2041-1294.2010.00011.x
  9. Sanchez, M., Navas, M., Ruggera, J. F., Casella, M. L., Aracil, J. and Martinez, M., "Biodiesel Production Optimization using $\gamma$-$Al_2O_3$ Based Catalysts," Energy., 73, 661-669(2014). https://doi.org/10.1016/j.energy.2014.06.067
  10. Sun, C., Qiu, F., Yang, D. and Ye, B., "Preparation of Biodiesel from Soybean Oil Catalyzed by Al-Ca Hydrotalcite Loaded with $K_2CO_3$ as Heterogeneous Solid Base Catalyst," Fuel Process Technol., 126, 383-391(2014). https://doi.org/10.1016/j.fuproc.2014.05.021
  11. Vyas, A. P., Subrahmanyam, N. and Patel, P. A., "Production of Biodiesel through Transesterification of Jatropha Oil using $KNO_3$/$Al_2O_3$ Solid Catalyst," Fuel., 88, 625-628(2009). https://doi.org/10.1016/j.fuel.2008.10.033
  12. Boz, N. and Kara, M., "Solid Base Catalyzed Transesterification of Canola Oil," Chem. Eng. Commun., 196(1), 80-92(2009). https://doi.org/10.1080/00986440802301438
  13. Xie, W. and Li, H., "Alumina-Supported Potassium Iodide as a Heterogeneous Catalyst for Biodiesel Production from Soybean Oil," J. Mol. Catal. A: Chem., 255, 1-9(2006). https://doi.org/10.1016/j.molcata.2006.03.061
  14. Matsuhashi, H., Oikawa, M. and Arata, K., "Formation of Superbase Sites on Alkaline Earth Metal Oxides by Doping of Alkali Metals," Langmuir, 16, 8201-8205(2000). https://doi.org/10.1021/la000346n
  15. Yamaguchi, T., Wang, Y., Komatsu, M. and Ookawa, M., "Preparation of New Solid Bases Derived from Supported Metal Nitrates and Carbonate," Catal. Surv. Jpn., 5, 81-89(2002). https://doi.org/10.1023/A:1015108902323
  16. Yi, H., Chena, Y. H., Huang, R. H., Lin, N. C., Shang, C. Y., Chang, C. C., Chang, P. C. and Chiang, C. Y. H., "Biodiesel Production in a Rotating Packed Bed using K/$\gamma$-$Al_2O_3$ Solid Catalyst," J. Taiwan Inst. Chem. Eng., 42(16), 937-944(2011). https://doi.org/10.1016/j.jtice.2011.05.007
  17. Park, S., Song, H. J., Lee, M. G. and Park, J., "Screening Test for Aqueous Solvents used in $CO_2$ Capture: $K_2CO_3$ used with Twelve Different Rate Promoters," Korean J. Chem. Eng., 31(1), 125-131(2014). https://doi.org/10.1007/s11814-013-0200-y
  18. Lapis, A. A. M., Oliveira, L. F., Neto, B. A. D. and Dupont, J., "Ionic Liquid Supported Acid/Base-Catalyzed Production of Biodiesel," Chem. Sus. Chem., 1, 759-762(2008). https://doi.org/10.1002/cssc.200800077
  19. Lee, J. T. and Kim, E. Y., "The Hydrolysis of Soybean Oil by Lipase Enzyme Catalyst," Korean J. Biotechnol. Bioeng., 23(6), 509-512(2008).
  20. Lee, K. H. and Ha, B. H., "Preparation and Characteristic for $\gamma$-Alumina," HWAHAK KONGHAK, 34(1), 28-35(1996).
  21. Lukic, L., Krstic, J., Jovanovic, D. and Skala, D., "Alumina/Silica Supported $K_2CO_3$ as a Catalyst for Biodiesel Synthesis from Sunflower Oil," Bioresour. Technol., 100, 4690-4696(2009). https://doi.org/10.1016/j.biortech.2009.04.057
  22. Liu, H., Su, L., Liu, F., Li, C. and Solomon, U. U., "Cinder Supported $K_2CO_3$ as Catalyst for Biodiesel Production," Appl. Catal. B, 106, 550-558(2011). https://doi.org/10.1016/j.apcatb.2011.06.015
  23. Wang, Y., Zhu, J. H. and Huang, W. Y., "Synthesis and Characterization of Potassium-Modified Alumina Superbases," Phys. Chem. Chem. Phys., 3, 2537-2543(2001). https://doi.org/10.1039/b100084p
  24. Schuchardt, U., Sercheli, R. and Vargas, R. M., "Transesterification of Vegetable Oils," J. Braz. Chem. Soc., 9, 199-210(1998).
  25. Alonso, D. M., Mariscal, R., Moreno-Tost, R., Poves, M. D. Z. and Granados, M. L., "Potassium Leaching during Triglyceride Transesterification using K/$\gamma$-$Al_2O_3$ Catalyst," Catal. Commun., 8, 2074-2080(2007). https://doi.org/10.1016/j.catcom.2007.04.003
  26. Dicosimo, J. I., Diez, V. K., Xu, M., Iglesia, E. and Apesteguia, C. R., "Structure and Surface and Catalytic Properties of Mg-Al Basic Oxides," J. Catal., 178, 499-510(1998). https://doi.org/10.1006/jcat.1998.2161
  27. Teng, G., Gao, L., Xiao, G., Liu, H. and Lv, J., "Biodiesel Preparation from Jatropha Curcas Oil Catalyzed by Hydrotalcite Loaded with $K_2CO_3$," Appl. Biochem. Biotechnol., 10, 8953-8959(2010).

Cited by

  1. n-Octadecane 으로부터 항공유 제조를 위한 Pt-Mg/mesoporous aluminosilicate 촉매 연구 vol.54, pp.5, 2016, https://doi.org/10.9713/kcer.2016.54.5.712