DOI QR코드

DOI QR Code

웨어러블 텍스타일 스트레인 센서 리뷰

Wearable Textile Strain Sensors

  • Roh, Jung-Sim (Dept. of Clothing & Textiles, Sangmyung Univerity)
  • 투고 : 2016.10.24
  • 심사 : 2016.11.15
  • 발행 : 2016.12.31

초록

This paper provides a review of wearable textile strain sensors that can measure the deformation of the body surface according to the movements of the wearer. In previous studies, the requirements of textile strain sensors, materials and fabrication methods, as well as the principle of the strain sensing according to sensor structures were understood; furthermore, the factors that affect the sensing performance were critically reviewed and application studies were examined. Textile strain sensors should be able to show piezoresistive effects with consistent resistance-extension in response to the extensional deformations that are repeated when they are worn. Textile strain sensors with piezoresistivity are typically made using conductive yarn knit structures or carbon-based fillers or conducting polymer filler composite materials. For the accuracy and reliability of textile strain sensors, fabrication technologies that would minimize deformation hysteresis should be developed and processes to complement and analyze sensing results based on accurate understanding of the sensors' resistance-strain behavior are necessary. Since light-weighted, flexible, and highly elastic textile strain sensors can be worn by users without any inconvenience so that to enable the users to continuously collect data related to body movements, textile strain sensors are expected to become the core of human interface technologies with a wide range of applications in diverse areas.

키워드

참고문헌

  1. Alexopoulos, N. D., Bartholome, C., Poulin, P., & Marioli-Riga, Z. (2010). Structural health monitoring of glass fiber reinforced composites using embedded carbon nanotube (CNT) fibers. Composites Science and Technology, 70(2), 260-271. doi:10.1016/j.compscitech.2009.10.017
  2. Atalay, O., Kennon, W. R., & Husain, M. D. (2013). Textile-based weft knitted strain sensors: Effect of fabric parameters on sensor properties. Sensors, 13(8), 11114-11127. doi:10.3390/s130811114
  3. Bae, S. H., Lee, Y., Sharma, B. K., Lee, H. J., Kim, J. H., & Ahn, J. H. (2013). Graphene-based transparent strain sensor. Carbon, 51, 236-242. doi:10.1016/j.carbon.2012.08.048
  4. Balberg, I., & Binenbaum, N. (1987). Invariant properties of the percolation thresholds in the soft-core-hard-core transition. Physical Review A, 35(12), 5174. doi:org/10.1103/PhysRevA.35.5174
  5. Barlow, D. H., Becker, R., Leitenberg, H., & Agras, W. S. (1970). A mechanical strain gauge for recording penile circumference change. Journal of Applied Behavior Analysis, 3(1), 73-76. doi:10.1901/jaba.1970.3-73
  6. Bashir, T., Ali, M., Cho, S. W., Persson, N. K., & Skrifvars, M. (2013). OCVD polymerization of PEDOT: Effect of pre-treatment steps on PEDOT-coated conductive fibers and a morphological study of PEDOT distribution on textile yarns. Polymers for Advanced Technologies, 24(2), 210-219. doi:10.1002/pat.3073
  7. Bashir, T., Ali, M., Persson, N. K., Ramamoorthy, S. K., & Skrifvars, M. (2014). Stretch sensing properties of conductive knitted structures of PEDOT-coated viscose and polyester yarns. Textile Research Journal, 84(3), 323-334. doi:10.1177/0040517513494253
  8. Bartlett, P. N., & Lingchung, S. K. (1989). Conducting polymer gas sensors part II: response of polypyrrole to methanol vapour. Sensors and Actuators, 19, 141-150. doi:10.1016/0250-6874(89)80127-1
  9. Bilotti, E., Zhang, R., Deng, H., Baxendale, M., & Peijs, T. (2010). Fabrication and property prediction of conductive and strain sensing TPU/CNT nanocomposite fibres. Journal of Materials Chemistry, 20(42), 9449-9455. doi:10.1039/C0JM01827A
  10. Borsenberger, P. M., & Bassler, H. (1991). Concerning the role of dipolar disorder on charge transport in molecularly doped polymers. The Journal of Chemical Physics, 95(7), 5327-5331. doi:10.1063/1.461646
  11. Calvert, P., Duggal, D., Patra, P., Agrawal, A. P., & Sawhney, A. (2008). Conducting polymer and conducting composite strain sensors on textiles. Molecular Crystals and Liquid Crystals, 484(1), 291-657. doi:10.1080/15421400801904690
  12. Campbell, T. E., Munro, B. J., Wallace, G. G., & Steele, J. R. (2007). Can fabric sensors monitor breast motion?. Journal of Biomechanics, 40(13), 3056-3059. doi:10.1016/j.jbiomech.2007.01.020
  13. Catrysse, M., Puers, R., Hertleer, C., Van Langenhove, L., Van Egmond, H., & Matthys, D. (2004). Towards the integration of textile sensors in a wireless monitoring suit. Sensors and Actuators A: Physical, 114(2), 302-311. doi:10.1016/j.sna.2003.10.071
  14. Cochrane, C., Koncar, V., Lewandowski, M., & Dufour, C. (2007). Design and development of a flexible strain sensor for textile structures based on a conductive polymer composite. Sensors, 7(4), 473-492. doi:10.3390/s7040473
  15. Daoud, W. A., Xin, J. H., & Szeto, Y. S. (2005). Polyethylenedioxythiophene coatings for humidity, temperature and strain sensing polyamide fibers. Sensors and Actuators B: Chemical, 109(2), 329-333. doi:10.1016/j.snb.2004.12.067
  16. Giorgino, T., Tormene, P., Lorussi, F., De Rossi, D., & Quaglini, S. (2009). Sensor evaluation for wearable strain gauges in neurological rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17(4), 409-415. doi:10.1109/TNSRE.2009.2019584
  17. Kaiser, A. B., Flanagan, G. U., Stewart, D. M., & Beaglehole, D. (2001). Heterogeneous model for conduction in conducting polymers and carbon nanotubes. Synthetic Metals, 117(1), 67-73. doi:10.1016/S0379-6779(00)00540-3
  18. Kim, Y. J., Cha, J. Y., Ham, H., Huh, H., So, D. S., & Kang, I. (2011). Preparation of piezoresistive nano smart hybrid material based on graphene. Current Applied Physics, 11(1), S350-S352. doi:10.1016/j.cap.2010.11.022
  19. Kinkeldei, T., Zysset, C., Cherenack, K. H., & Troster, G. (2011). A textile integrated sensor system for monitoring humidity and temperature. In Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International (pp. 1156-1159). Beijing, China, IEEE. doi:10.1109/TRANSDUCERS.2011.5969238
  20. Kuş, M., & Okur, S. (2009). Electrical characterization of PEDOT: PSS beyond humidity saturation. Sensors and Actuators B: Chemical, 143(1), 177-181. doi:10.1016/j.snb.2009.08.055
  21. Lee, J. H., Kim, S. H., Lee, J. J., Yang, D. J., Park, B. C., Ryu, S. H., & Park, I. K. (2014). A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Nanoscale, 6(20), 11932-11939. doi:10.1039/C4NR03295K
  22. Li, X., Zhang, R., Yu, W., Wang, K., Wei, J., Wu, D., Cao, A., Li, Z., Cheng, Y., Zheng, Q., & Ruoff, R. S. (2012). Stretchable and highly sensitive graphene-on-polymer strain sensors. Scientific Reports, 2, 870. doi:10.1038/srep00870
  23. Li, Q., Kim, N. H., Yoo, G. H., & Lee, J. H. (2009). Positive temperature coefficient characteristic and structure of graphite nanofibers reinforced high density polyethylene/carbon black nanocomposites. Composites Part B: Engineering, 40(3), 218-224. doi:10.1016/j.compositesb.2008.11.002
  24. Li, Y., Cheng, X. Y., Leung, M. Y., Tsang, J., Tao, X. M., & Yuen, M. C. W. (2005). A flexible strain sensor from polypyrrole-coated fabrics. Synthetic Metals, 155(1), 89-94. doi:10.1016/j.synthmet.2005.06.008
  25. Liu, L., Ye, X., Wu, K., Han, R., Zhou, Z., & Cui, T. (2009). Humidity sensitivity of multi-walled carbon nanotube networks deposited by dielectrophoresis. Sensors, 9(3), 1714-1721. doi:10.3390/s90301714
  26. Lorussi, F., Rocchia, W., Scilingo, E. P., Tognetti, A., & De Rossi, D. (2004). Wearable, redundant fabric-based sensor arrays for reconstruction of body segment posture. IEEE Sensors Journal, 4(6), 807-818. doi:10.1109/JSEN.2004.837498
  27. Mattmann, C., Amft, O., Harms, H., Troster, G., & Clemens, F. (2007). Recognizing upper body postures using textile strain sensors. In 2007 11th IEEE International Symposium on Wearable Computers (pp. 29-36). Boston, MA, USA, IEEE. doi:10.1109/ISWC.2007.4373773
  28. Mattmann, C., Clemens, F., & Troster, G. (2008). Sensor for measuring strain in textile. Sensors, 8(6), 3719-3732. doi:10.3390/s8063719
  29. Munro, B. J., Campbell, T. E., Wallace, G. G., & Steele, J. R. (2008). The intelligent knee sleeve: A wearable biofeedback device. Sensors and Actuators B: Chemical, 131(2), 541-547. doi:10.1016/j.snb.2007.12.041
  30. Paradiso, R., Loriga, G., & Taccini, N. (2005). A wearable health care system based on knitted integrated sensors. Information Technology in Biomedicine, IEEE Transactions on, 9(3), 337-344. doi:10.1109/TITB.2005.854512
  31. Pati, R., Zhang, Y., Nayak, S. K., & Ajayan, P. M. (2002). Effect of $H_2O$ adsorption on electron transport in a carbon nanotube. Applied Physics Letters, 81, 2638. doi:10.1063/1.1510969
  32. Perc, B., Kuscer, D., Holc, J., Belavic, D., Jerlah, M., Svetec, D. G., & Kosec, M. (2009, September). Thick-film strain sensor on textile. In Proceeding of 45th International Conference on Microelectronics, Devices and Materials, pp. 9-11.
  33. Ramanavicius, A., Ramanaviciene, A., & Malinauskas, A. (2006). Electrochemical sensors based on conducting polymer-polypyrrole. Electrochimica Acta, 51(27), 6025-6037. doi:10.1016/j.electacta.2005.11.052
  34. Roh, J. S., & Kim, S. R. (2016). All-fabric intelligent temperature regulation system for smart clothing applications. Journal of Intelligent Material Systems and Structures, 27(9), 1165-1175. doi:10.1177/1045389X15585901.
  35. Robert, C., Feller, J. F., & Castro, M. (2012). Sensing skin for strain monitoring made of PC-CNT conductive polymer nanocomposite sprayed layer by layer. ACS Applied Materials & Interfaces, 4(7), 3508-3516. doi:10.1021/am300594t
  36. Scilingo, E. P., Lorussi, F., Mazzoldi, A., & De Rossi, D. (2003). Strain-sensing fabrics for wearable kinaesthetic-like systems. IEEE Sensors Journal, 3(4), 460-467. doi:10.1109/JSEN.2003.815771
  37. Shyr, T. W., Shie, J. W., Jiang, C. H., & Li, J. J. (2014). A textile-based wearable sensing device designed for monitoring the flexion angle of elbow and knee movements. Sensors, 14(3), 4050-4059. doi:10.3390/s140304050
  38. Strazdiene, E., Blazevic, P., Vegys, A., & Dapkuniene, K. (2015). New tendencies of wearable electronics application in smart clothing. Electronics and Electrical Engineering, 73(1), 21-24.
  39. Taccola, S., Greco, F., Zucca, A., Innocenti, C., de Julian Fernandez, C., Campo, G., Sangregorio, C., Mazzolai, B., & Mattoli, V. (2013). Characterization of free-standing PEDOT: PSS/iron oxide nanoparticle composite thin films and application as conformable humidity sensors. ACS Applied Materials & Interfaces, 5(13), 6324-6332. doi:10.1021/am4013775
  40. Taya, M., Kim, W. J., & Ono, K. (1998). Piezoresistivity of a short fiber/elastomer matrix composite. Mechanics of Materials, 28(1), 53-59. doi:10.1016/S0167-6636(97)00064-1
  41. Ueda, N., & Taya, M. (1986). Prediction of the electrical conductivity of two?dimensionally misoriented short fiber composites by a percolation model. Journal of Applied Physics, 60(1), 459-461. doi:10.1063/1.337778.
  42. Wang, J., Long, H., Soltanian, S., Servati, P., & Ko, F. (2014). Electromechanical properties of knitted wearable sensors: Part 2-Parametric study and experimental verification. Textile Research Journal, 84(2), 200-213. doi:10.1177/0040517513490057.
  43. Wang, X., & Chung, D. D. L. (1995). Short-carbon-fiber-reinforced epoxy as a piezoresistive strain sensor. Smart Materials and Structures, 4(4), 363. doi:10.1088/0964-1726/4/4/017
  44. Xiang, Z. D., Chen, T., Li, Z. M., & Bian, X. C. (2009). Negative temperature coefficient of resistivity in lightweight conductive carbon nanotube/polymer composites. Macromolecular Materials and Engineering, 294(2), 91-95. doi:10.1002/mame.200800273
  45. Xiong, C., Zhou, Z., Xu, W., Hu, H., Zhang, Y., & Dong, L. (2005). Polyurethane/carbon black composites with high positive temperature coefficient and low critical transformation temperature. Carbon, 43(8), 1788-1792. doi:10.1016/j.carbon.2005.02.001
  46. Xue, P., Tao, X. M., Kwok, K. W., Leung, M. Y., & Yu, T. X. (2004). Electromechanical behavior of fibers coated with an electrically conductive polymer. Textile Research Journal, 74(10), 929-936. doi:10.1177/004051750407401013
  47. Xue, P., Tao, X. M., & Tsang, H. Y. (2007). In situ SEM studies on strain sensing mechanisms of PPy-coated electrically conducting fabrics. Applied Surface Science, 253(7), 3387-3392. doi:10.1016/j.apsusc.2006.07.003
  48. Yamada, T., Hayamizu, Y., Yamamoto, Y., Yomogida, Y., Izadi-Najafabadi, A., Futaba, D. N., & Hata, K. (2011). A stretchable carbon nanotube strain sensor for human-motion detection. Nature Nanotechnology, 6(5), 296-301. doi:10.1038/nnano.2011.36
  49. Yi, W., Wang, Y., Wang, G., & Tao, X. (2012). Investigation of carbon black/silicone elastomer/dimethylsilicone oil composites for flexible strain sensors. Polymer Testing, 31(5), 677-684. doi:10.1016/j.polymertesting.2012.03.006
  50. Yu, H., Cao, T., Zhou, L., Gu, E., Yu, D., & Jiang, D. (2006). Layer-by-layer assembly and humidity sensitive behavior of poly (ethyleneimine)/multiwall carbon nanotube composite films. Sensors and Actuators B: Chemical, 119(2), 512-515. doi:10.1016/j.snb.2005.12.048
  51. Zhang, H., Tao, X., Yu, T., & Wang, S. (2006). Conductive knitted fabric as large-strain gauge under high temperature. Sensors and Actuators A: Physical, 126(1), 129-140. doi:10.1016/j.sna.2005.10.026
  52. Zhang, R., Deng, H., Valenca, R., Jin, J., Fu, Q., Bilotti, E., & Peijs, T. (2013). Strain sensing behaviour of elastomeric composite films containing carbon nanotubes under cyclic loading. Composites Science and Technology, 74, 1-5. doi:10.1016/j.compscitech.2012.09.016
  53. Zhang, R., Deng, H., Valenca, R., Jin, J., Fu, Q., Bilotti, E., & Peijs, T. (2012). Carbon nanotube polymer coatings for textile yarns with good strain sensing capability. Sensors and Actuators A: Physical, 179, 83-91. doi:10.1016/j.sna.2012.03.029

피인용 문헌

  1. Design and Fabrication of Signal and Power Transmission Textile Cable for Smart Wearables vol.20, pp.5, 2018, https://doi.org/10.5805/SFTI.2018.20.5.616