References
- Alexopoulos, N. D., Bartholome, C., Poulin, P., & Marioli-Riga, Z. (2010). Structural health monitoring of glass fiber reinforced composites using embedded carbon nanotube (CNT) fibers. Composites Science and Technology, 70(2), 260-271. doi:10.1016/j.compscitech.2009.10.017
- Atalay, O., Kennon, W. R., & Husain, M. D. (2013). Textile-based weft knitted strain sensors: Effect of fabric parameters on sensor properties. Sensors, 13(8), 11114-11127. doi:10.3390/s130811114
- Bae, S. H., Lee, Y., Sharma, B. K., Lee, H. J., Kim, J. H., & Ahn, J. H. (2013). Graphene-based transparent strain sensor. Carbon, 51, 236-242. doi:10.1016/j.carbon.2012.08.048
- Balberg, I., & Binenbaum, N. (1987). Invariant properties of the percolation thresholds in the soft-core-hard-core transition. Physical Review A, 35(12), 5174. doi:org/10.1103/PhysRevA.35.5174
- Barlow, D. H., Becker, R., Leitenberg, H., & Agras, W. S. (1970). A mechanical strain gauge for recording penile circumference change. Journal of Applied Behavior Analysis, 3(1), 73-76. doi:10.1901/jaba.1970.3-73
- Bashir, T., Ali, M., Cho, S. W., Persson, N. K., & Skrifvars, M. (2013). OCVD polymerization of PEDOT: Effect of pre-treatment steps on PEDOT-coated conductive fibers and a morphological study of PEDOT distribution on textile yarns. Polymers for Advanced Technologies, 24(2), 210-219. doi:10.1002/pat.3073
- Bashir, T., Ali, M., Persson, N. K., Ramamoorthy, S. K., & Skrifvars, M. (2014). Stretch sensing properties of conductive knitted structures of PEDOT-coated viscose and polyester yarns. Textile Research Journal, 84(3), 323-334. doi:10.1177/0040517513494253
- Bartlett, P. N., & Lingchung, S. K. (1989). Conducting polymer gas sensors part II: response of polypyrrole to methanol vapour. Sensors and Actuators, 19, 141-150. doi:10.1016/0250-6874(89)80127-1
- Bilotti, E., Zhang, R., Deng, H., Baxendale, M., & Peijs, T. (2010). Fabrication and property prediction of conductive and strain sensing TPU/CNT nanocomposite fibres. Journal of Materials Chemistry, 20(42), 9449-9455. doi:10.1039/C0JM01827A
- Borsenberger, P. M., & Bassler, H. (1991). Concerning the role of dipolar disorder on charge transport in molecularly doped polymers. The Journal of Chemical Physics, 95(7), 5327-5331. doi:10.1063/1.461646
- Calvert, P., Duggal, D., Patra, P., Agrawal, A. P., & Sawhney, A. (2008). Conducting polymer and conducting composite strain sensors on textiles. Molecular Crystals and Liquid Crystals, 484(1), 291-657. doi:10.1080/15421400801904690
- Campbell, T. E., Munro, B. J., Wallace, G. G., & Steele, J. R. (2007). Can fabric sensors monitor breast motion?. Journal of Biomechanics, 40(13), 3056-3059. doi:10.1016/j.jbiomech.2007.01.020
- Catrysse, M., Puers, R., Hertleer, C., Van Langenhove, L., Van Egmond, H., & Matthys, D. (2004). Towards the integration of textile sensors in a wireless monitoring suit. Sensors and Actuators A: Physical, 114(2), 302-311. doi:10.1016/j.sna.2003.10.071
- Cochrane, C., Koncar, V., Lewandowski, M., & Dufour, C. (2007). Design and development of a flexible strain sensor for textile structures based on a conductive polymer composite. Sensors, 7(4), 473-492. doi:10.3390/s7040473
- Daoud, W. A., Xin, J. H., & Szeto, Y. S. (2005). Polyethylenedioxythiophene coatings for humidity, temperature and strain sensing polyamide fibers. Sensors and Actuators B: Chemical, 109(2), 329-333. doi:10.1016/j.snb.2004.12.067
- Giorgino, T., Tormene, P., Lorussi, F., De Rossi, D., & Quaglini, S. (2009). Sensor evaluation for wearable strain gauges in neurological rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17(4), 409-415. doi:10.1109/TNSRE.2009.2019584
- Kaiser, A. B., Flanagan, G. U., Stewart, D. M., & Beaglehole, D. (2001). Heterogeneous model for conduction in conducting polymers and carbon nanotubes. Synthetic Metals, 117(1), 67-73. doi:10.1016/S0379-6779(00)00540-3
- Kim, Y. J., Cha, J. Y., Ham, H., Huh, H., So, D. S., & Kang, I. (2011). Preparation of piezoresistive nano smart hybrid material based on graphene. Current Applied Physics, 11(1), S350-S352. doi:10.1016/j.cap.2010.11.022
- Kinkeldei, T., Zysset, C., Cherenack, K. H., & Troster, G. (2011). A textile integrated sensor system for monitoring humidity and temperature. In Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International (pp. 1156-1159). Beijing, China, IEEE. doi:10.1109/TRANSDUCERS.2011.5969238
- Kuş, M., & Okur, S. (2009). Electrical characterization of PEDOT: PSS beyond humidity saturation. Sensors and Actuators B: Chemical, 143(1), 177-181. doi:10.1016/j.snb.2009.08.055
- Lee, J. H., Kim, S. H., Lee, J. J., Yang, D. J., Park, B. C., Ryu, S. H., & Park, I. K. (2014). A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Nanoscale, 6(20), 11932-11939. doi:10.1039/C4NR03295K
- Li, X., Zhang, R., Yu, W., Wang, K., Wei, J., Wu, D., Cao, A., Li, Z., Cheng, Y., Zheng, Q., & Ruoff, R. S. (2012). Stretchable and highly sensitive graphene-on-polymer strain sensors. Scientific Reports, 2, 870. doi:10.1038/srep00870
- Li, Q., Kim, N. H., Yoo, G. H., & Lee, J. H. (2009). Positive temperature coefficient characteristic and structure of graphite nanofibers reinforced high density polyethylene/carbon black nanocomposites. Composites Part B: Engineering, 40(3), 218-224. doi:10.1016/j.compositesb.2008.11.002
- Li, Y., Cheng, X. Y., Leung, M. Y., Tsang, J., Tao, X. M., & Yuen, M. C. W. (2005). A flexible strain sensor from polypyrrole-coated fabrics. Synthetic Metals, 155(1), 89-94. doi:10.1016/j.synthmet.2005.06.008
- Liu, L., Ye, X., Wu, K., Han, R., Zhou, Z., & Cui, T. (2009). Humidity sensitivity of multi-walled carbon nanotube networks deposited by dielectrophoresis. Sensors, 9(3), 1714-1721. doi:10.3390/s90301714
- Lorussi, F., Rocchia, W., Scilingo, E. P., Tognetti, A., & De Rossi, D. (2004). Wearable, redundant fabric-based sensor arrays for reconstruction of body segment posture. IEEE Sensors Journal, 4(6), 807-818. doi:10.1109/JSEN.2004.837498
- Mattmann, C., Amft, O., Harms, H., Troster, G., & Clemens, F. (2007). Recognizing upper body postures using textile strain sensors. In 2007 11th IEEE International Symposium on Wearable Computers (pp. 29-36). Boston, MA, USA, IEEE. doi:10.1109/ISWC.2007.4373773
- Mattmann, C., Clemens, F., & Troster, G. (2008). Sensor for measuring strain in textile. Sensors, 8(6), 3719-3732. doi:10.3390/s8063719
- Munro, B. J., Campbell, T. E., Wallace, G. G., & Steele, J. R. (2008). The intelligent knee sleeve: A wearable biofeedback device. Sensors and Actuators B: Chemical, 131(2), 541-547. doi:10.1016/j.snb.2007.12.041
- Paradiso, R., Loriga, G., & Taccini, N. (2005). A wearable health care system based on knitted integrated sensors. Information Technology in Biomedicine, IEEE Transactions on, 9(3), 337-344. doi:10.1109/TITB.2005.854512
-
Pati, R., Zhang, Y., Nayak, S. K., & Ajayan, P. M. (2002). Effect of
$H_2O$ adsorption on electron transport in a carbon nanotube. Applied Physics Letters, 81, 2638. doi:10.1063/1.1510969 - Perc, B., Kuscer, D., Holc, J., Belavic, D., Jerlah, M., Svetec, D. G., & Kosec, M. (2009, September). Thick-film strain sensor on textile. In Proceeding of 45th International Conference on Microelectronics, Devices and Materials, pp. 9-11.
- Ramanavicius, A., Ramanaviciene, A., & Malinauskas, A. (2006). Electrochemical sensors based on conducting polymer-polypyrrole. Electrochimica Acta, 51(27), 6025-6037. doi:10.1016/j.electacta.2005.11.052
- Roh, J. S., & Kim, S. R. (2016). All-fabric intelligent temperature regulation system for smart clothing applications. Journal of Intelligent Material Systems and Structures, 27(9), 1165-1175. doi:10.1177/1045389X15585901.
- Robert, C., Feller, J. F., & Castro, M. (2012). Sensing skin for strain monitoring made of PC-CNT conductive polymer nanocomposite sprayed layer by layer. ACS Applied Materials & Interfaces, 4(7), 3508-3516. doi:10.1021/am300594t
- Scilingo, E. P., Lorussi, F., Mazzoldi, A., & De Rossi, D. (2003). Strain-sensing fabrics for wearable kinaesthetic-like systems. IEEE Sensors Journal, 3(4), 460-467. doi:10.1109/JSEN.2003.815771
- Shyr, T. W., Shie, J. W., Jiang, C. H., & Li, J. J. (2014). A textile-based wearable sensing device designed for monitoring the flexion angle of elbow and knee movements. Sensors, 14(3), 4050-4059. doi:10.3390/s140304050
- Strazdiene, E., Blazevic, P., Vegys, A., & Dapkuniene, K. (2015). New tendencies of wearable electronics application in smart clothing. Electronics and Electrical Engineering, 73(1), 21-24.
- Taccola, S., Greco, F., Zucca, A., Innocenti, C., de Julian Fernandez, C., Campo, G., Sangregorio, C., Mazzolai, B., & Mattoli, V. (2013). Characterization of free-standing PEDOT: PSS/iron oxide nanoparticle composite thin films and application as conformable humidity sensors. ACS Applied Materials & Interfaces, 5(13), 6324-6332. doi:10.1021/am4013775
- Taya, M., Kim, W. J., & Ono, K. (1998). Piezoresistivity of a short fiber/elastomer matrix composite. Mechanics of Materials, 28(1), 53-59. doi:10.1016/S0167-6636(97)00064-1
- Ueda, N., & Taya, M. (1986). Prediction of the electrical conductivity of two?dimensionally misoriented short fiber composites by a percolation model. Journal of Applied Physics, 60(1), 459-461. doi:10.1063/1.337778.
- Wang, J., Long, H., Soltanian, S., Servati, P., & Ko, F. (2014). Electromechanical properties of knitted wearable sensors: Part 2-Parametric study and experimental verification. Textile Research Journal, 84(2), 200-213. doi:10.1177/0040517513490057.
- Wang, X., & Chung, D. D. L. (1995). Short-carbon-fiber-reinforced epoxy as a piezoresistive strain sensor. Smart Materials and Structures, 4(4), 363. doi:10.1088/0964-1726/4/4/017
- Xiang, Z. D., Chen, T., Li, Z. M., & Bian, X. C. (2009). Negative temperature coefficient of resistivity in lightweight conductive carbon nanotube/polymer composites. Macromolecular Materials and Engineering, 294(2), 91-95. doi:10.1002/mame.200800273
- Xiong, C., Zhou, Z., Xu, W., Hu, H., Zhang, Y., & Dong, L. (2005). Polyurethane/carbon black composites with high positive temperature coefficient and low critical transformation temperature. Carbon, 43(8), 1788-1792. doi:10.1016/j.carbon.2005.02.001
- Xue, P., Tao, X. M., Kwok, K. W., Leung, M. Y., & Yu, T. X. (2004). Electromechanical behavior of fibers coated with an electrically conductive polymer. Textile Research Journal, 74(10), 929-936. doi:10.1177/004051750407401013
- Xue, P., Tao, X. M., & Tsang, H. Y. (2007). In situ SEM studies on strain sensing mechanisms of PPy-coated electrically conducting fabrics. Applied Surface Science, 253(7), 3387-3392. doi:10.1016/j.apsusc.2006.07.003
- Yamada, T., Hayamizu, Y., Yamamoto, Y., Yomogida, Y., Izadi-Najafabadi, A., Futaba, D. N., & Hata, K. (2011). A stretchable carbon nanotube strain sensor for human-motion detection. Nature Nanotechnology, 6(5), 296-301. doi:10.1038/nnano.2011.36
- Yi, W., Wang, Y., Wang, G., & Tao, X. (2012). Investigation of carbon black/silicone elastomer/dimethylsilicone oil composites for flexible strain sensors. Polymer Testing, 31(5), 677-684. doi:10.1016/j.polymertesting.2012.03.006
- Yu, H., Cao, T., Zhou, L., Gu, E., Yu, D., & Jiang, D. (2006). Layer-by-layer assembly and humidity sensitive behavior of poly (ethyleneimine)/multiwall carbon nanotube composite films. Sensors and Actuators B: Chemical, 119(2), 512-515. doi:10.1016/j.snb.2005.12.048
- Zhang, H., Tao, X., Yu, T., & Wang, S. (2006). Conductive knitted fabric as large-strain gauge under high temperature. Sensors and Actuators A: Physical, 126(1), 129-140. doi:10.1016/j.sna.2005.10.026
- Zhang, R., Deng, H., Valenca, R., Jin, J., Fu, Q., Bilotti, E., & Peijs, T. (2013). Strain sensing behaviour of elastomeric composite films containing carbon nanotubes under cyclic loading. Composites Science and Technology, 74, 1-5. doi:10.1016/j.compscitech.2012.09.016
- Zhang, R., Deng, H., Valenca, R., Jin, J., Fu, Q., Bilotti, E., & Peijs, T. (2012). Carbon nanotube polymer coatings for textile yarns with good strain sensing capability. Sensors and Actuators A: Physical, 179, 83-91. doi:10.1016/j.sna.2012.03.029
Cited by
- Design and Fabrication of Signal and Power Transmission Textile Cable for Smart Wearables vol.20, pp.5, 2018, https://doi.org/10.5805/SFTI.2018.20.5.616