DOI QR코드

DOI QR Code

Synthesis and Characterization of Di and Triblock Copolymers Containing a Naphthalene Unit for Polymer Electrolyte Membranes

고분자전해질 막을 위한 나프탈렌 단위를 포함하는 디 및 트리 블록공중합체의 합성 및 특성분석

  • KIM, AERHAN (R&D Center for CANUTECH, Business Incubation Center of Chonbuk National University)
  • 김애란 (전북대학교 창업보육센터 캔유텍 연구개발센터)
  • Received : 2016.12.11
  • Accepted : 2016.12.30
  • Published : 2016.12.30

Abstract

A fluorinated-sulfonated, hydrophobic-hydrophilic copolymer was planed subsequently synthesized using typical nucleophilic substitution polycondensation reaction. A novel AB and ABA (or BAB) block copolymers were synthesized using sBCPSBP (sulfonated 4,4'-bis[4-chlorophenyl)sulfonyl]-1,1'-biphenyl), DHN (1,5-dihydroxynaphthalene), DFBP (decafluorobiphenyl) and HFIP (4,4'-hexafluoroisopropylidenediphenol). All block copolymers were easily cast and made into clear films. The structure and synthesized copolymers and corresponding membranes were analyzed using GPC (gel permeation chromatography), $^1H$-NMR ($^1H$ nuclear magnetic resonance) and FT-IR (Fourier transform infrared). TGA (Thermogravimetric analysis) and DSC (differential scanning calorimetry) analysis showed that the prepared membranes were thermally stable, so that elevated temperature fuel cell operation would be possible. Hydrophobic/hydrophilic phase separation and clear ionic aggregate block morpology was confirmed in both triblock and diblock copolymer in AFM (atomic force microscopy), which may be highly related to their proton transport ability. A sulfonated BAB triblock copolymer membrane with an ion-exchange capacity (IEC) of 0.6 meq/g has a maximum ion conductivity of 40.3 mS/cm at $90^{\circ}C$ and 100% relative humidity.

Keywords

References

  1. W. Vielstich, A. Lamm, H. A. Gasteiger, "Handbook of fuel cells", Wiley, 2003.
  2. V. Ramani, H. R. Kunz, J. M. Fenton, "Investigation of Nafion/HPA composite membrnaes for high temperature/low relative humidity PEMFC operation", J. Membr. Sci., 232, 2004, p. 31-44. https://doi.org/10.1016/j.memsci.2003.11.016
  3. D. J. Connollym, W. F. Gresham, US Patent 3 282 875, 1966.
  4. C. Heitner-Wirguin, "Recent advances in perfluorinated ionomer membranes: structure, properties and applications", J. Membr. Sci., 120, 1996, p. 1-33. https://doi.org/10.1016/0376-7388(96)00155-X
  5. Q. Li, R. He, Q. O. Jensen, N. J. Bjerrum, "Approaches and recent development of polymer electrolyte membranes for fuel cells operating above $100^{\circ}C$", Chem. Mater, 15, 2003, p. 4896-4915. https://doi.org/10.1021/cm0310519
  6. K. A. Mauritz, R. B. Moore, "State of understanding of Nafion", Chem. Rev., 104, 2004, p. 4535-4586. https://doi.org/10.1021/cr0207123
  7. M. Rikukawa, K. Sanui, "Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers", Prog. Polym. Sci., 25, 2000, p. 1463-1502. https://doi.org/10.1016/S0079-6700(00)00032-0
  8. J. A. Kerres, "Development of ionomer membranes for fuel cells", J. Membr. Sci., 185, 2001, p. 3-27. https://doi.org/10.1016/S0376-7388(00)00631-1
  9. S, Mochizuki, A. L. Zydney, "Theoretical analysis of pore size distribution effects on membrane transport", J. Membr. Sci., 82(3), 1993, p. 211-228. https://doi.org/10.1016/0376-7388(93)85186-Z
  10. F. Schonberger, M. Hein, J. Kerres, "Preparation and characterisation of sulfonated partially fluorinated statistical poly(arylene ether sulfone)s and their blends with PBI", Solid State Ionics, 178, 2007, p. 547-554. https://doi.org/10.1016/j.ssi.2007.01.003
  11. B. Smitha, S. Sridhar, A. A. Khan, "Solid polymer electrolyte membranes for fuel cell applications-a review", J. Membr. Sci., 259, 2005, p. 10-26. https://doi.org/10.1016/j.memsci.2005.01.035
  12. J. Wootthikanokkhan, N. Seeponkai, "Methanol permeability and properties of DMFC membranes based on sulfonated PEEK/PVDF blends", J. Appl. Polym. Sci., 102, 2006, p. 5941-5947. https://doi.org/10.1002/app.25151
  13. M. Rikukawa, K. Sanui, "Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers", Polym. Sci., 25, 2000, p. 1463-1502.
  14. N. Y. Arnett, W. L. Harrison, A. S. B. Adami, A. Roy, O. Lane, F. Cromer, L. Dong, J. E. McGrath, "Hydrocarbon and partially fluorinated sulfonated copolymer blends as functional membranes for proton exchange membrane fuel cells", J. Power Sources, 172, 2007, p. 20-29. https://doi.org/10.1016/j.jpowsour.2007.04.051
  15. D. J. Yoo, S. H. Hyun, A. R. Kim, G. G. Kumar and K. S. Nahm, "Novel sulfonated poly (arylene biphenylsulfone ether) copolymers containing bisphenylsulfonyl biphenylmoiety: structural, thermal, electrochemical and morphological characteristics", Polym. Int., 60, 2011, p. 80-92.
  16. K. B. Wiles, C. M. de Diego, J. Abajo, J. E. McGrath, "Directly copolymerized partially fluorinated disulfonated poly(arylene ether sulfone) random copolymers for PEM fuel cell systems: Synthesis, fabrication and characterization of membranes and membrane - electrode assemblies for fuel cell applications", J. Membr. Sci., 294, 2007, p. 22-29. https://doi.org/10.1016/j.memsci.2007.01.036
  17. A. S. Badami , O. Lane , H. S. Lee, A. Roy, J. E. McGrath, "Fundamental investigations of the effect of the linkage group on the behavior of hydrophilic -hydrophobic poly(arylene ether sulfone) multiblock copolymers for proton exchange membrane fuel cells". J. Membr. Sci., 333, 2009, 1-11. https://doi.org/10.1016/j.memsci.2008.12.066
  18. D. S. Kim , Y. S. Kim , M. D. Guiver, J. Ding, B. S. Pivovar, "Highly fluorinated comb-shaped copolymer as proton exchange membranes (PEMs): Fuel cell performance", J. Power Sources, 182, 2008, p. 100-105. https://doi.org/10.1016/j.jpowsour.2008.03.065
  19. A. R. Kim, M. Vinothkannan. D. J. Yoo, "Sulfonatedfluorinated copolymer blending membranes containing SPEEK for use as the electrolyte in polymer electrolyte fuel cells (PEFC)", Int. J. Hydrogen Energy, in press, DOI 10.1016/j.ijhydene.2016.11.161
  20. P. Erno, "Structure determination of organic compounds: Tables of spectral data", E. Pretsch, P. Buhlmann, C. Affolter, 3rd completely revised and enlarged English edition, Springer, Berlin, 2000, p. 245-312.
  21. Y. Chikasige, Y. Chikyu, K. Miyatake, M. Watanabe, "Poly(arylene ether) ionomers containing sulfofluorenyl groups for fuel cell applications", Macromolecules, 38, 2005, p. 7121-7126. https://doi.org/10.1021/ma050856u
  22. G. Kumar, A. R. Kim, K. S. Nahm, D. J. Yoo, R. Elizabeth, "High ion and lower molecualr transportation of the poly vinylidene fluoride-hexa fluoro propylene hybrid membranes for the high temperature and lower humidity direct methanol fuel cell applications", J. Power Sources, 195, 2010, p. 5922-5928. https://doi.org/10.1016/j.jpowsour.2009.11.021
  23. R. W. Kopitzke, C. A. Linkous, H. R. Anderson, G. L. Nelson, "Conductivity and water uptake of aromatic-based proton exchange membrane electrolytes", J. Electrochem. Soc., 147, 2000, p. 1677-1681. https://doi.org/10.1149/1.1393417

Cited by

  1. Sulfonated fluorinated block copolymer containing naphthalene unit/sulfonated polyvinylidene-co-hexafluoropropylene/functionalized silicon dioxide ternary composite membrane for low-humidity fuel cell applications vol.296, pp.11, 2018, https://doi.org/10.1007/s00396-018-4403-y