DOI QR코드

DOI QR Code

10kHz 반송파를 사용한 서해안 수중 채널환경 분석

Underwater Channel Environment Analysis Using 10Khz Carrier Frequency at the Shore of West Sea

  • Kim, Min-sang (Hoseo University Department of Information and Telecommunication Eng.) ;
  • Ko, Hak-lim (Hoseo University Department of Information and Telecommunication Eng.) ;
  • Kim, Kye-won (Hoseo University Department of Information and Telecommunication Eng.) ;
  • Lee, Tae-seok (Hoseo University Department of Information and Telecommunication Eng.) ;
  • Im, Tae-ho (Hoseo University Department of Oceanic IT Eng.)
  • 투고 : 2015.11.25
  • 심사 : 2016.01.15
  • 발행 : 2016.01.31

초록

본 연구는 10kHz의 반송 주파수를 사용하여 서해안의 수중 채널 환경 측정과 분석을 목표로 하여 충청남도 당진군 장고항 인근 해역에서 측정을 수행하였으며, 수평채널 환경을 측정하기 위해 송신기와 수신기 사이의 이격거리를 10m~4000m까지 다르게 하였고, 수직 채널 측정은 송신측 선박과 수신측 선박을 접선시켜 고정한 후 송신기와 수신기의 입수 깊이를 다르게 하여 측정을 수행하였다. 측정 데이터를 바탕으로 실해역의 전력 지연 프로파일(Power delay profile)을 분석 하여 상관대역폭(Coherence bandwidth)을 추정하였으며, 수신된 tone신호의 주파수 변환을 통한 도플러 주파수를 분석하여 상관시간(Coherence time)을 추정 하였다. 따라서 본 연구는 향후 수중 채널 환경에서 원활한 통신과 통신의 신뢰성 확보를 위한 수중통신용 프레임 설계 연구를 수행하는 기반연구가 될 것으로 기대된다.

This study was carried out near the waters of Jango port, Dangjin-gun, Chungcheongnam-do by utilizing 10kHz carrier frequency, for the purpose of measurement and analysis of underwater channel environment of the Western sea. For the measurement of horizontal channel environment, the separation distance between transmitter and receiver is made differently in the range between 10m and 4000m. Meanwhile, for the measurement of vertical channel environment, transmission and receiving side ships are fixed as contacted each other and measured differently depending on their depth of submergence. In this study, the Coherence Bandwidth and the Coherence Time were estimated by analyzing the Power delay profile of the real sea based on the measured data, and analyzing the doppler frequency through frequency conversion of received tone-signal, respectively. This study is expected to become a base study in carrying out the frame design for underwater communication to improve the communication and secure the reliability of communication in future underwater channel environment.

키워드

참고문헌

  1. M. C. Domingo, "An overview of the internet of underwater things," J. Netw. Comput. Appl., vol. 35, no. 6, pp. 1879-1890, Nov. 2012. https://doi.org/10.1016/j.jnca.2012.07.012
  2. H.-W. Jeon, S.-J. Lee, and H.-N. Lee, "Underwater channel analysis and transmission method research via coded OFDM," J. KICS, vol. 36, no. 5, pp. 573-581, May 2011.
  3. B. Borowski, "Characterization of a very shallow water acoustic communication channel," OCEANS 2009 MTS/IEEE, pp. 1-10, Biloxi, MS, Oct. 2009.
  4. D. Choi, H. Kim, N. Kim, S. Kim, and J. Chung, "Coherence bandwidth and coherence time for the communication frame in the underwater of east sea," J. Acoustical Soc. Korea, vol. 29, no. 6, pp. 365-373, Aug. 2010.
  5. S.-G. Kim, S.-M. Kim, and Y.-K. Kim, "Shallow water acoustic communication channel characteristic analysis using PN sequence with 25 kHz carrier at the shore of geojea island," J. Acoustical Soc. Korea, vol. 26, no. 8, pp. 381-389, Jun. 2007.
  6. C. Hwang and K. Kim, "Doppler frequency estimation for time-varying underwater acoustic communication channel," J. KICS, vol. 40, no. 1, pp. 187-192, Dec. 2014.
  7. W. Y. C. Lee, Mobile Cellular Communications, McGraw-Hill, New York, 1989.
  8. T. S. Rappaport, Wireless Communications, Chapters 3 and 4, Prentice Hall, Upper Saddle River, New jersey, 1996.
  9. T. C. Yang, "Measurements of temporal coherence of sound transmissions through shallow water," J. Acoust. Soc. Am., vol. 120, no. 5, pp. 2595-2614, Nov. 2006. https://doi.org/10.1121/1.2345910
  10. B. Sklar, Digital Communications, Chapter 15, Prentice Hall, Upper Saddle River, New jersey, 2001.