Acknowledgement
Supported by : National Research Foundation of Korea(NRF)
References
- Baragar, A.; McKinnon, David., K3 surfaces, rational curves, and rational points. J. Number Theory 130 (2010), no. 7, 1470-1479. https://doi.org/10.1016/j.jnt.2010.02.014
- Bhatnagar, A.; Szpiro, L., Very ample polarized self maps extend to projective space. J. Algebra 351 (2012), 251-253. https://doi.org/10.1016/j.jalgebra.2011.11.010
- Call, Gregory S.; Silverman, Joseph H., Canonical heights on varieties with morphisms. Compositio Math. 89 (1993), no. 2, 163-205.
- Demailly, J.-P. , Multiplier ideal sheaves and analytic methods in algebraic geometry, in: School on Vanishing Theorems and Effective Results in Algebraic Geometry. Trieste 2000, ICTP Lecture Notes Vol. 6 (Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2001.) pp. 1-148.
- Grothendieck, A., Elements de Geometrie Algebrique IV, Etude locale des schemas et des morphismes de schemas. III, Inst. Hautes Etudes Sci. Publ. Math. No. 28, 1966.
- Hartshorne, S., Algebraic geometry, Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977.
- Fulton, W., Intersection theory. Second edition. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 2. Springer-Verlag, Berlin, 1998. xiv+470 pp. ISBN: 3-540-62046-X; 0-387-98549-2 14C17 (14-02)
- Fakhruddin, N.,Questions on self maps of algebraic varieties. J. Ramanujan Math. Soc. 18, no. 2, 109-122, 2003.
- Kawaguchi, S., Canonical heights, invariant currents, and dynamical eigensystems of morphisms for line bundles. J. Reine Angew. Math. 597, 135-173, 2006.
- Kawaguchi, S.; Silverman, J. H., Examples of dynamical degree equals arithmetic degree. preprint, arXiv:1212.3015, 2012.
- Lee, C.-G., The numerical equivalence relation for height functions and ampleness and nefness criteria for divisors. Bull. London Math. Soc. 44 (2012), no. 5, 944-960. https://doi.org/10.1112/blms/bds023
- Lee, C.-G., Equidistribution of periodic points of some automorphisms on K3 surfaces. Bull. Korean Math. Soc. 49 (2012) 307-317. https://doi.org/10.4134/BKMS.2012.49.2.307
- Morton, P; Silverman, J.H, Rational periodic points of rational functions. Internat. Math. Res. Notices 1994, no. 2, 97-110. https://doi.org/10.1155/S1073792894000127
- Northcott, D. G., Periodic points on an algebraic variety. Ann. of Math. (2) 51, (1950). 167-177. https://doi.org/10.2307/1969504
- Peternell, T., Finite morphisms of projective and Kahler manifolds. Sci. China Ser. A 51 (2008), no. 4, 685-694. https://doi.org/10.1007/s11425-007-0134-0
- Serre, J. P., Lectures on Mordell-Weil Theorem, Translated from the French and edited by Martin Brown from notes by Michel Waldschmidt. With a foreword by Brown and Serre. Third edition. Aspects of Mathematics. Friedr. Vieweg & Sohn, Braunschweig, 1997.
- Silverman, J. H., Rational points on K3 surfaces: a new canonical height., Invent. Math. 105 (1991), no. 2, 347-373. https://doi.org/10.1007/BF01232270
- Silverman, J. H.; Hindry, M. Diophantine geometry, An introduction. Graduate Texts in Mathematics, 201. Springer-Verlag, New York, 2000.
- Silverman, J. H., The arithmetic of dynamical systems. Graduate Texts in Mathematics, 241. Springer, New York, 2007.
- Silverman, J. H., Height estimate for equidimensional dominant rational maps. J. Ramanujan Math. Soc. 26 (2011), no. 2, 145-163.
- Silverman, J. H., Dynamical Degrees, Arithmetic Degrees, and Canonical Heights for Dominant Rational Self-Maps of Projective Space. preprint, arXiv:1111.5664, 2011.
- Weil, A., Arithmetic on algebraic varieties. Ann. of Math. (2) 53 (1951), 412-444. https://doi.org/10.2307/1969564
- Yuan, X., Big line bundles over arithmetic varieties, Invent. Math. 173, no. 3 (2008), 603-649. https://doi.org/10.1007/s00222-008-0127-9
Cited by
- HEIGHT INEQUALITY FOR RATIONAL MAPS AND BOUNDS FOR PREPERIODIC POINTS vol.55, pp.5, 2018, https://doi.org/10.4134/bkms.b160064