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HEIGHT ESTIMATES FOR DOMINANT ENDOMORPHISMS

ON PROJECTIVE VARIETIES

Chong Gyu Lee

Abstract. If φ is a polarizable endomorphism on a projective variety,

then the Weil height machine guarantees that φ satisfies Northcott’s the-

orem. In this paper, we show that Northcott’s theorem only holds for
polarizable endomorphisms and generalize this result to arbitrary domi-

nant endomorphisms: we introduce the height expansion and contraction

coefficients which provide weak Northcott’s theorem for dominant endo-
morphisms. We also give some applications of the height expansion and

contraction coefficients.

1. Introduction

In this paper, we introduce the height expansion and contraction coefficients
which provide weak Northcott’s theorem for dominant endomorphisms:

Definition 1. Let X be a projective variety and let φ : X → X be a dominant
endomorphism defined over Q. We define the height expansion coefficient of φ
for D to be

µ1(φ,D) := sup{α ∈ R | φ∗D−αD is ample} = max{α ∈ R | φ∗D−αD is nef}

and the height contraction coefficient of φ for D to be

µ2(φ,D) := inf{α ∈ R | αD−φ∗D is ample} = min{α ∈ R | αD−φ∗D is nef}.

Main Theorems (Theorem A, Theorem B). Let X be a projective variety, let
φ : X → X be a dominant endomorphism defined over Q, let D be an ample
divisor on X and let µ1 = µ1(φ,D), µ2 = µ2(φ,D) be the height expansion and
contraction coefficients of φ for D. Then
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(A) φ is a polarizable if and only if the following inequality holds:

hD(P ) =
1

q
hD (φ(P )) +O(1) (1)

for all P ∈ X(Q).
(B) In general, weak Northcott’s theorem holds for φ: for any ε > 0, there

are constants C1,ε, C2,ε satisfying

1

µ1 − ε
hD
(
φ(P )

)
+ C1,ε ≥ hD(P ) ≥ 1

µ2 + ε
hD
(
φ(P )

)
− C2,ε

for all P ∈ X(Q).
(C) µ1, µ2 are the optimal constants which satisfy (B).

A dynamical system (X,φ) consists of a set X and a self map φ : X → X.
We are interested in special points on X like fixed points, so we examine the
orbit of points Oφ(P ) = {P, φ(P ), φ2(P ) = φ ◦ φ(P ), · · · }. We say a point P
is ‘φ-preperiodic’ if Oφ(P ) is a finite set. The set of preperiodic points has
nice properties. For example, consider a dynamical system (A, [2]) where A
is an abelian variety and [2] is the doubling map. Then preperiodic points
are exactly torsion points, which is one of interesting and important topics in
algebraic geometry.

If we have a tool which shows the difference of P and φ(P ), then we can find
interesting properties of preperiodic points. Northcott’s theorem [14] tells that
we can use the height functions to study dynamical systems (Pn, φ) consisting of
endomorphisms on projective spaces. In particular, Northcott’s theorem holds
for polarizable endomorphisms: we say that an endomorphism φ on a projective
variety X is polarizable if there is an ample divisor D ∈ Pic(X) ⊗Z R such
that φ∗D is linearly equivalent to qD for some q > 1. Then, by the functorial
property of the Weil height machine [18, §B.5], an endomorphism φ satisfies (1).
This result was developed in various directions - the canonical height function
[3], dynamical equidistribution [23], etc.

However, not all endomorphisms are polarizable: in general, a polarizable
endomorphism is a restriction of an endomorphism φ on projective spaces on
a φ-invariant subvariety. (See [2, 8].) So, any automorphism on a projective
variety cannot be polarizable. For example, an automorphism of infinite order
on a K3 surface introduced on Example 4.4 is not polarizable. We will show
that Northcott’s theorem only holds for polarizable endomorphisms, so we only
expect weaker result for non-polarizable endomorphisms.

Interestingly, we have a similar result for rational maps: Silverman intro-
duced height expansion coefficient for equidimensional dominant rational maps
on [20]. Clearly, a dominant endomorphism is an example of equidimensional
dominant rational maps so that we can compare Silverman’s height expansion
coefficient with µ1. In section 4, we show that they are exactly same:

Theorem C. Let φ : X → X be a dominant endomorphism defined Q, let D be
an ample divisor on X, let µ1(φ,D) be the height expansion coefficient of φ for
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D and let µ′ be Silverman’s height expansion coefficient defined on [20]. Then,
the following equality holds:

µ1(φ,D) = µ′(φ,D,D) := lim inf
hD(P )→∞
P∈X

hD
(
φ(P )

)
hD(P )

.

Not only µ1(φ,D) but also µ2(φ,D) has a relation with previous result in
arithmetic dynamics. It can be a way of proving Silverman’s conjecture [16].

Theorem D. Let φ : X → X be an endomorphism of dynamical degree δφ.
Then, for any ample divisor D on X, the following inequality holds:

lim sup
n→∞

µ2(φn, D)
1
n ≤ δφ

and the equality holds if there is a point whose arithmetic degree is the same
with the dynamical degree.

From now on, we will let X be a projective variety, let φ : X → X be a
dominant endomorphism on X defined over Q, let D be an ample divisor on X
and let hD be the Weil height function associated with a divisor D unless state
otherwise.
Acknowledgements. The author would like to thank Dan Abramovich, Michelle
Manes and Joseph H. Silverman for their helpful advices and comments.

2. Northcott’s theorem and polarizable endomorphisms

In this section, we check that why we cannot expect Northcott’s theorem for
non-polarizable endomorphisms.

Theorem A. Let φ : X → X be an endomorphism on a projective variety X
defined over Q. Then, φ is a polarizable if and only if

hD(P ) =
1

q
hD (φ(P )) +O(1) for all P ∈ X(Q).

Proof. The ‘only if’ part is easy: suppose that there is an ample divisor D such
that φ∗D ∼ qD for some q > 1. By the Functorial property of the Weil height
machine [18, Theorem B.3.2.(b)], we have

hD
(
φ(P )

)
= hφ∗D(P ) +O(1) = qhD(P ) +O(1)

and get the desired result.
Suppose that Northcott’s theorem holds for φ: there is an ample divisor D

such that

hD (φ(P )) = qhD(P ) +O(1) for all P ∈ X(Q). (2)

By [11, 16], the kernel of the Weil height machine is the torsion subgroup of
Pic(X). So, (2) means that the linear equivalence class of E := qD − φ∗D
generates the trivial Weil height function so that the linear equivalence class
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[E] is a torsion element in Pic(X)[11, Theorem 3.3]. Let k be the order of [E].
Then

0 = k[E] =
[
k
(
qD − φ∗D

)]
in Pic(X). Therefore, φ∗(kD) is linearly equivalent to q(kD). �

3. Dominant endomorphisms and pull-backs of ample divisors

In previous section, we see that we only expect weaker result for non-polarizable
endomorphisms: we expect to find some constants αi, Ci such that

α1hD
(
φ(P )

)
− C1 < hD(P ) < α2hD

(
φ(P )

)
+ C1 for all P ∈ X(Q). (3)

In this section, we show that the dominance condition is required for the above
inequality. Also, we check some properties of dominant endomorphisms which
will be important in the next section.

Lemma 3.1. Let φ : X → X be an endomorphism satisfying the inequality (3).
Then φ is quasi-finite.

Proof. Suppose not. Then we have a point P whose inverse image is a subvariety
Y . Thus, hD(P ) is a constant while hD(Q) varies unbounded on Y . Therefore,
hD(Q) cannot be bounded by some multiple of hD

(
φ(Q)

)
= hD(P ). �

Usually, a dominant morphism need not be quasi-finite. However, for endo-
morphisms on projective varieties, the ‘quasi-finiteness’ condition is equivalent
to the ‘dominance’ condition.

Definition 2. Let ψ : X → Y be a rational map. We say that ψ is dominant
if ψ(X) = Y .

Proposition 3.2. Let φ : X → X be an endomorphism. Then the followings
are equivalent;

(1) φ is dominant.
(2) φ is quasi-finite.
(3) φ is finite.

Proof. (1) ⇒ (3) Since X is a projective variety, X is compact and hence φ
is surjective. Then, [15, §4] says that surjective holomorphic endomorphism on
a projective variety is finite.

(3) ⇒ (1) It is a property of finite morphisms; if φ is not dominant, then
φ is not quasi-finite and hence not finite.

(2) ⇔ (3) If φ is a finite endomorphism, then it is clearly quasi-finite. For
the other direction, [5, §8.11.1] says that φ is finite if φ is proper, locally of finite
presentation and quasi-finite. Since X is a projective variety, φ is automatically
projective and hence proper and locally of finite presentation. Therefore, if φ
is quasi-finite, then φ is finite. �
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Now assume that φ is a dominant endomorphism defined over Q. Is it enough
to get the inequality (3)? To compare values of hD(P ) and hD

(
φ(P )

)
, it is

essential to observe the relation between D and φ∗D because of the functorial
property of the Weil height machine [18, Theorem B.3.2.(b)]:

hD
(
φ(P )

)
= hφ∗D(P ) +O(1).

If φ : X → X is polarizable, then, there is an ample divisor E such that
qE ∼ φ∗E, which implies that φ∗E is ample. It is also true for general dominant
endomorphisms because φ is quasi-finite.

Proposition 3.3. Let φ : X → X be an endomorphism. Then the followings
are equivalent:

(1) φ is dominant.
(2) φ∗E is ample for some ample divisor E.
(3) φ∗E is ample for all ample divisors E.

Proof. (1) ⇒ (3) Suppose that φ∗E is not ample for an ample divisor E.
Then, by Kleiman’s criterion, there is a nonzero pseudo-effective 1-cycle C (a
limit of effective cycle) such that C · φ∗E ≤ 0. More precisely, since E is ample
and hence nef, φ∗E is also nef. So C · φ∗E = 0. Because of the projection
formula, we get

φ∗C · E = C · φ∗E = 0.

Since φ∗ is a graded ring homomorphism on the Chow ring so that φ∗C is a
pseudo-effective 1-cycle. Moreover, φ∗C · E = 0 so that φ(C) should be trivial
1-cycle, a union of finite points. However, φ is dominant and hence is quasi-
finite. Therefore, the preimage of a finite set of points is a finite set of points
again, so we again have a contradiction.

(3) ⇒ (2) It is trivial.
(2) ⇒ (1) If φ is not dominant, then dimφ(X) < dimX. So, there is a

subvariety Y ⊂ X such that φ(Y ) = Q ∈ X. Therefore, for an ample divisor E,

hφ∗E(P ) = hE
(
φ(P )

)
+O(1) = hE(Q) +O(1) for all P ∈ Y.

Thus, the height corresponding φ∗E is bounded on a variety Y and hence φ∗E
is not ample. �

4. weak Northcott’s theorem

In this section, we check that the height expansion and contraction coef-
ficients in Definition 1 are well-defined and prove Theorem B. We start with
lemmas, which show the motivation of the height expansion and contraction
coefficients.

Lemma 4.1. Let E1, E2 be ample divisors on X. Suppose that there is a con-
stant such that hE1(P ) < hE2(P ) + C for all P ∈ X(Q). Then E2 − E1 is
nef.
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Proof. From the inequality hE1 < hE2 +C, we can calculate the fractional limit,
defined on [11]:

FlimE1
(E2 − E1, X) = lim inf

hE1
(P )→∞
P∈X

hE2−E1
(P )

hE1(P )
≥ 0.

We know that E is nef if and only if FlimF (E,X) ≥ 0 for any ample divisor F
[11, Thaorem A.(2)]. Therefore, E2 − E1 is nef. �

Since the nef cone is the closure of the ample cone, the height expansion and
contraction coefficients are the optimal number for φ∗D−αD, βφ∗D−D to be
nef.

Lemma 4.2. Let φ : X → X be a dominant endomorphism on a projective
variety, let D an an ample divisor on X. Then,

{α ∈ R | φ∗D − αD is ample} = (−∞, µ1(φ,D)] or (−∞, µ1(φ,D))

and

{α ∈ R | αφ∗D −D is ample} = [µ2(φ,D),∞) or (µ2(φ,D),∞).

Moreover, µ1(φ,D), µ2(φ,D) are positive numbers.

Proof. Let µi = µi(φ,D) be the height expansion and contraction coefficients.
It is clear that φ∗D − αD is ample if α is nonpositive. Also, {α ∈ R | φ∗D −
αD is ample} is connected since φ∗D − β0D is ample then φ∗D − βD is ample
for all β < β0.

We need to show to show that E1 = φ∗D−(µ1−ε)D and E2 = (µ2+ε)D−φ∗D
are ample for any ε > 0. By definition of µ1, for any ε > 0, there is an real
number α ∈ [µ1 − ε, µ1] such that φ∗D − αD is ample. Therefore, E1 is a sum
of two ample divisors φ∗D − αD and

(
α − (µ1 − ε)

)
D and hence it is ample,

too. Similarly, E2 is ample.
For positivity, we can use the fractional limit (see Remark 1) or a basic

properties of ample divisors (see [18, Theorem A.3.2.3].) �

Lemma 4.2 guarantees the well-definedness of µi(φ,D). Once well-defined,
the height expansion and contraction coefficients will provides weak Northcott’s
theorem.

Theorem B. Let X be a projective variety, let φ : X → X be a dominant
endomorphism defined over Q, let D be an ample divisor on X and let µ1 =
µ1(φ,D), µ2 = µ2(φ,D) be the height expansion and contraction coefficients of
φ for D. Then, for any ε > 0, there are constants C1,ε, C2,ε satisfying

1

µ1 − ε
hD
(
φ(P )

)
+ C1,ε ≥ hD(P ) ≥ 1

µ2 + ε
hD
(
φ(P )

)
− C2,ε

for all P ∈ X(Q). Moreover, µ1, µ2 are the optimal constants to satisfy the
above inequality.
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Proof. By Lemma 4.2, both E1 = φ∗D− (µ1 − ε)D and E2 = (µ2 + ε)D− φ∗D
are ample for any ε > 0. Thus, hE1

and hE2
are bounded below because of

properties of the Weil height machine [18, Theorem B.5.3]. Therefore, we get

hD
(
φ(P )

)
− (µ1 − ε)hD(P ) ≥ hE1

(P ) + C1 > C1

and

(µ2 + ε)hD(P )− hD
(
φ(P )

)
≥ hE2

(P ) + C2 > C2.

Therefore, we can find C1,ε, C2,ε such that

1

µ1 − ε
hD
(
φ(P )

)
+ C1,ε ≥ hD(P ) ≥ 1

µ2 + ε
hD
(
φ(P )

)
− C2,ε.

Moreover, by Lemma 4.2, µ1 is the largest number such that φ∗D − αD is
nef. So, φ∗D− (µ1 + ε)D is not nef and hence (µ1 + ε)hD(P ) ≤ hD

(
φ(P )

)
+C ′

does not hold for any constant C ′ by Lemma 4.1. Symmetrically, µ2 is also the
optimal choice. �

Example 4.3. Let E be an elliptic curve defined over Q and let Q be a non-
torsion point on E. Define an endomorphism

φ(R) = [2]R−Q.
It is not polarizable by any ample divisor: take any non-torsion point P . We
have φ∗(P ) ∼ 4(P + Q). We can easily check that the divisor φ∗(P ) − q(P ) is
ample if and only if q < 4 and hence µ1(φ, (P )) = 4. However, we get

lim
M→∞

1

4
hφ∗(P )([−M ]Q)− h(P )([−M ]Q) = lim

M→∞
−M

2
ĥ(Q) = −∞

where ĥ is the Néron-Tate height function on E. Therefore, we only expect that

1

4− ε
h(P )

(
φ(R)

)
+ C1,ε ≥ h(P )(R) ≥ 1

4 + ε
h(P )(R)− C2,ε.

Here are some examples on K3 surfaces. For details of K3 surfaces like the
definition of involutions, we refer [1, 9, 12, 17] and [19, § 7.4] to the reader.

Example 4.4. Let X ⊂ P2 × P2 be a K3-surface defined by intersection of
hypersurfaces of bidegree (1, 1) and (2, 2), let ı1, ı2 be involutions on V , let
D1, D2 be pullbacks of H × P2 and P2 × H and let E+ = −D1 + βD2, E− =
D2 + β−1D1 where β = 2 +

√
3. Then divisor D = aE+ + bE− is ample if and

only if a, b > 0.
We get ı∗1(aE+ + bE−) = β(aE−) + β−1(bE+). Thus,

µ1(ı1, E+ + E−) = sup{α | β−1 − α > 0, β − α > 0}
= min

(
β−1, β

)
= β−1.

Let φ = ı2 ◦ ı1. Then it is dominant and satisfies

φ∗(aE++bE−) = ı∗1
(
ı∗2(aE++bE−)

)
= ı∗1(βaE−+β−1bE+) = β−2aE++β2bE−.
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Thus, we get

φ∗(aE+ + bE−)− α(aE+ + bE−) = a(β−2 − α)E+ + b(β2 − α)E−.

Therefore, µ1(φ, aE++bE−) = β−2 and hence µ(φ) = β−2. Similarly, µ2(φ, aE++
bE−) = β2.

Example 4.5. Let X ⊂ P1 × P1 × P1 be a generic hypersurface of tridegree
(2, 2, 2) of the Picard number 3 and let ı1, ı2 and ı3 be involutions on X. Then,
the ample cone is the light cone

L+ = {E ∈ Pic(V ) | E2 > 0, E ·D0 > 0}
where D0 is an arbitrary ample divisor. Let Ei be pullbacks of hyperplane Hi

of i-th component. Since the Picard number of X is three, {E1, E2, E3} is a
generator of Pic(X). Moreover, Ea = E1 + E2 + E3 is the very ample divisor
corresponding to the Segre embedding and the table of intersection numbers of
{E1, E2, E3} is  0 2 2

2 0 2
2 2 0

 .

Then the ample cone is described as follows:∑ aiEi

∣∣∣∣∣∣
∑
i6=j

aiaj > 0,
∑

ai > 0

 .

Since, ı∗1 (
∑
aiEi) = −a1E1 + (2a1 + a2)E2 + (2a1 + a3)E3, we get

µ1(ı1, Ea) = sup{α | (−1− α)E1 + (3− α)E2 + (3− α)E3 : ample}
= sup{α | (5− 3α) > 0, (α− 3)(3α− 1) > 0}

=
1

3

and

µ2(ı1, Ea) = inf{α | (α+ 1)E1 + (α− 3)E2 + (α− 3)E3 : ample}
= inf{α | (3α− 5) > 0, (α− 3)(3α− 1) > 0}
= 3.

Let φ1,2 = ı2 ◦ ı1. It is dominant because it is an automorphism. By symme-
try, we have ı∗2 (

∑
aiEi) = (2a2 + a1)E1 − a2E2 + (2a2 + a3)E3 and hence

φ∗1,2Ea = ı∗1
(
ı∗2Ea

)
= ı∗1(3E1 − E2 + 3E3) = −3E1 + 5E2 + 9E3.

Thus,

µ1(φ1,2, Ea) = sup{α | (−3− α)E1 + (5− α)E2 + (9− α)E3 : ample}
= sup{α | (11− 3α) > 0, 3α2 − 22α+ 3 > 0}

=
11−

√
112

3
.
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Similarly,

µ2(φ1,2, Ea) =
11 +

√
112

3
.

Example 4.6. Let X := Pn1×· · ·×Pnk where ni < ni+1 and let φ be a dominant
endomorphism on X defined Q. Then φ = (φ1, · · · , φk) where φi : Pni → Pni is
an endomorphism. Let πi : X→ Pni be a projection map, let ιi : Pni → X be a
closed embedding map and let Ei = π∗iHi where Hi is a hyperplane of Pni . Then

a divisor D =

k∑
i=1

aiEi is ample if and only if ai > 0 for all i. Furthermore,

φ∗Ei = deg φi · Ei and hence

µ1(φ,D) = min deg φi µ2(φ,D) = max deg φi.

5. Silverman’s height expansion coefficient

In this section, we compare µ1 with Silverman’s height expansion coefficient.
Silverman [20] introduces the height expansion coefficient for equidimensional
dominant rational maps:

Definition 3. Let ψ : X 99K Y be a dominant rational map between quasi-
projective varieties of the same dimension, all defined over Q. Fix height func-
tions hDY

and hDX
on Y and X respectively, corresponding to ample divisors

DY and DX . The height expansion coefficient of ψ (relative to chosen ample
divisors DY and DX) is the quantity

µ′(ψ,DX , DY ) = sup
∅6=U⊂X

lim inf
P∈U(Q)

hDY

(
ψ(P )

)
hDX

(P )
,

where the sup runs over all nonempty Zariski dense open subsets of X.

We can see that the relation between Definition 1 and Definition 3.

Theorem C. Let φ : X → X be a dominant endomorphism defined over Q,
let D be an ample divisor on X, let µ1(φ,D) be the height expansion coefficient
of φ for D and let µS be the Silverman’s height expansion coefficient defined on
[20]. Then, the following equality holds:

µ1(φ,D) = µ′(φ,D,D) := lim inf
hD(P )→∞
P∈X

hD
(
φ(P )

)
hD(P )

.

Proof. For a dominant endomorphism φ : X → X, φ is defined on entire X.
Thus, the supremum comes from the biggest open set of X, which is X itself:

µ′(φ,D,D) = sup
∅6=U⊂X

lim inf
hD(P )→∞

P∈U

hD
(
φ(P )

)
hD(P )

= lim inf
hD(P )→∞
P∈X

hD
(
φ(P )

)
hD(P )

.
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Let µ1 = µ1(φ,D), µ′ = µ′(φ,D,D) and let ε > 0 be any positive number.
Then, by Lemma 4.2, φ∗D − (µ1 − ε)D is ample. Thus,

hφ∗D(P )− (µ1 − ε)hD(P ) ≥ O(1).

Therefore,

hφ∗D(P )−O(1)

hD(P )
≥ µ1 − ε and hence lim inf

hD(P )→∞
P∈X

hφ∗D(P )

hD(P )
≥ µ1 − ε. (4)

On the other hand, let E = φ∗D − (µ1 + ε)D. Then, E is not nef divisor
because of Lemma 4.2. So, by Kleiman’s criterion, there is an irreducible curve
C such that C · E < 0. By [18, Theorem B.3.2(7)], we get

lim
hD(P )→∞

P∈C

hE(P )

hD(P )
=
E · C
D · C

< 0.

Thus, we get

lim inf
hD(P )→∞
P∈X

hE(P )

hD(P )
≤ lim
hD(P )→∞

P∈C

hE(P )

hD(P )
< 0.

We decompose E = φ∗D − (µ1 + ε)D to get an upper bound of µ′(φ,D,D):

0 > lim inf
hD(P )→∞
P∈X

hE(P )

hD(P )
= lim inf
hD(P )→∞
P∈X

hφ∗D(P )

hD(P )
− lim
hD(P )→∞
P∈X

h(µ1+ε)D(P )

hD(P )

and hence we obtain

µ′ = lim inf
hD(P )→∞
P∈X

hφ∗D(P )

hD(P )
< µ1 + ε. (5)

We combine (4) and (5) and get

µ1 − ε ≤ µ′ ≤ µ1 + ε

for any ε > 0. Therefore, we get the desired result. �

Remark 1. Note that Silverman’s height expansion coefficient for dominant
endomorphisms is the fractional limit defined in [11]:

µ′(φ,D,D) := lim inf
hD(P )→∞
P∈X

hD
(
φ(P )

)
hD(P )

= FlimD(φ∗D,X).

Since φ∗D is ample because of Proposition 3.3, we get FlimD(φ∗D,X) is positive
beause of arithmetic Kleiman’s Criterion [11, Theorem A(1)]. It is another proof
that µ1 is a positive number. Similarly, we can show that

µ2(φ,D) = Flimφ∗D(D,X)

so that µ2 is also positive.
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6. Applications

6.1. Arithmetic dynamics

The height expansion coefficient has an application in arithmetic dynam-
ics. We know that Preper(φ) is of bounded height when φ is polarizable with
q > 1. Recall that q = µ1(φ,D). Thus, it is not surprising that dominant
endomorphisms have the similar result.

Definition 4. Let φ : X → X be a dominant endomorphism defined over Q.
We define the global height expansion coefficient of φ to be

µ(φ) := sup
D: ample

µ1(φ,D).

Theorem 6.1. Let φ : X → X be a dominant endomorphism and E be an
ample divisor. Suppose that the global height expansion coefficient µ(φ) > 1.
Then, the set of preperiodic points is of bounded height by hE.

Proof. Let µ(φ) > 1. Then, there is an ample divisor D such that µ1(φ,D) > 1.

Suppose that ε = µ1(φ,D)−1
2 . Then,

1

µ1(φ,D)− ε
hD
(
φ(P )

)
=

1

1 + ε
hD
(
φ(P )

)
≥ hD(P )− C.

By telescoping sum, we have

lim
n→∞

(
1

1 + ε

)n
hD
(
φn(P )

)
≥ hD(P )− 1

1− 1
1+ε

C.

Therefore, if P ∈ Preper(φ), then the left hand side goes to zero so that hD(P )
is bounded.

Moreover, if E is another ample divisor then αD−E is ample for sufficiently
large α > 0. Since the Weil height corresponding the ample divisor is bounded
below and hence

α · hD(P ) +O(1) > hE(P )

for all P ∈ X. Therefore, hE
(
Preper(φ)

)
is also bounded. �

Example 6.2. Let φi : Pn → Pn be an endomorphism of degree di > 1. Then,
a morphism

φ =
∏

φi : (Pn)
m → (Pn)

m

is a dominant endomorphism of µ(φ) = min di > 1. Thus, Preper(φ) is a set of
bounded height.

Theorem 6.3 (Fakhruddin). Let D be an ample divisor on X and let φ : X →
X be a dominant endomorphism such that φ∗D −D is ample. Then the subset
of X(Q) containing periodic points of φ is Zariski dense.

Proof. See [8, Theorem 5.1]. �
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Corollary 6.4. Let φ : X → X be a dominant morphism with µ(φ) > 1. Then,

Preper(φ) = X.

Proof. By the definition of µ, for any ε > 0, there is an ample divisor D such

that µ1(φ,D) > µ(φ) − ε. Take ε =
1

2

(
µ1(φ) − 1

)
. Then, µ1(φ,D) > 1. Now,

by definition of µ1, φ∗D − (µ1(φ,D)− δ) ·D is ample for any δ > 0. Because
µ1(φ) > 1, take δ = µ1(φ,D)− 1 and get an ample divisor φ∗D −D. �

6.2. Dynamical degree and Silverman’s conjecture

We need some definition from arithmetic dynamics for this subsection. We
refer [10, 21] for details.

Definition 5. Let φ : X → X be a dominant endomorphism. We define the
dynamical degree to be

δφ = lim
n→∞

ρ((φn)∗,NS(X)⊗Z R)
1
n

where NS(X) is the Néron-Severi group of X and ρ is the spectral radius of a
linear operator.

Definition 6. Let φ : X → X be a dominant endomorphism and let D be an
ample divisor. We define the arithmetic degree of P to be

αφ(P ) = lim
n→∞

max
(
1, hD

(
φn(P )

)) 1
n

if the limit exists.

Recently, Silverman conjecture a relation between arithmetic degree and dy-
namical degree [21]. And Kawaguchi-Silverman prove some height inequality
[10]. Actually, we assume that φ is a dominant rational map but we introduce
endomorphism case for convenience.

Conjecture 1. αφ(P ) exists for all P , and αφ(P ) = δφ if the orbit of P is
Zariski dense in X.

Theorem 6.5 (Kawaguchi-Silverman). Let φ : X → X be an endomorphism
and let D be an ample divisor. There is a constant C such that the following
inequality holds for all P ∈ X(Q): for any ε > 0,

hD
(
φn(P )

)
< (δφ + ε)nhD(P ) + C

holds for sufficiently large n.

We can find an interesting fact: the height contraction coefficient is a lower
bound of the dynamical degree.

Theorem 6.6. Let φ : X → X be an endomorphism and let D be an ample
divisor. Then we have

lim supµ2(φn, D)
1
n ≤ δφ.
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Proof. By Theorem B, we have an height inequality

hD
(
φn(P )

)
< (µ2(φn, D) + ε)hD(P ) + C ′

and µ2(φn, D) is the optimal one. Thus we have

(µ2(φn, D) + ε)hD(P ) < (δφ + ε)nhD(P ) + C ′′

Therefore, we have the desired result. �

Corollary 6.7. Suppose that Silverman’s conjecture is true and there is a point
P with Zariski dense orbit. Then

lim supµ2(φn, D)
1
n = δφ

for all ample divisors D on X.

Proof. By definition, we have

αφ(P ) = lim
n→∞

hD
(
φn(P )

) 1
n ≤ lim sup

n→∞
(µ2(φn, D)+ε)

1
n (hD(P )+C)

1
n = lim sup

n→∞
(µ2(φn, D)+ε)

1
n .

Since we have the following inequality,

(µ2(φn, D) + ε)hD(P ) < (δφ + ε)nhD(P ) + C ′′

Silverman’s conjecture tells

αφ(P ) = lim sup
n→∞

(µ2(φn, D) + ε)
1
n = δφ.

�

6.3. Seshadri Constant

The height expansion coefficient has a relation with the Seshadri constant.
Demailly [4] defined the Seshadri constant.

Definition 7. Let Y be a closed subscheme of X whose underlying subvariety

is of codimension r > 1, let X̃ be a blowup of X along Y and let L be a
numerically effective divisor of X. Then, we define the generalized Seshadri
constant

ε(L, Y ) = sup{α | π∗L− αE : numerically effective}.

Similarly, we define the s-invariant

sL(Y ) = min{s | s · π∗L− E : numerically effective}.

Theorem 6.8. Let φ : W →W be a dominant morphism and let D be a ample
divisor. Then,

ε(φ∗D,D) ≥ µ1(φ,D).
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Proof. The closure of the ample cone of V is the nef cone and hence

µ1(φ,D) = sup{α | φ̃∗D − αD is ample.}
= sup{α | φ̃∗D − αD is numerically effective.}
= ε(φ∗D,D).

�
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