Acknowledgement
Supported by : Hwa-Rang Dae Research Institute
References
- B.S, Kim and J.T. Oden, hp-version discontinuous Galerkin methods for hyperbolic conservation laws, Computer Methods in Applied Mechanics and Engineering, 133(3) (1996), 259-286. https://doi.org/10.1016/0045-7825(95)00944-2
- B. Cockburn and C-W. Shu, The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, Journal of Computational Physics, 141(2) (1998), 199-224. https://doi.org/10.1006/jcph.1998.5892
- L. Krivodonova, J. Xin, J-F. Remacle, N. Chevaugeon, and J.E. Flaherty, Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws, Applied Numerical Mathematics, 48(3) (2004), 323-338. https://doi.org/10.1016/j.apnum.2003.11.002
- T.J. Hughes, G. Engel, L. Mazzei, and M.G. Larson, A comparison of discontinuous and continuous Galerkin methods based on error estimates, conservation, robustness and efficiency, Discontinuous Galerkin Methods, (2000), 135-146.
- P. Houston and E. Suli, hp-adaptive discontinuous Galerkin finite element methods for first-order hyperbolic problems, SIAM Journal on Scientific Computing, 23(4) (2001), 1226-1252. https://doi.org/10.1137/S1064827500378799
- R. Hartmann and P. Houston, Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations, Journal of Computational Physics, 183(2) (2002), 508-532. https://doi.org/10.1006/jcph.2002.7206
- R. Biswas, K.D. Devine, and J.E. Flaherty, Parallel, adaptive finite element methods for conservation laws, Applied Numerical Mathematics, 14 (1994), 255-283. https://doi.org/10.1016/0168-9274(94)90029-9
- C.E. Baumann and J.T. Oden, A discontinuous hp finite element method for convection-diffusion problems, Computer Methods in Applied Mechanics and Engineering, 175(3) (1999), 311-341. https://doi.org/10.1016/S0045-7825(98)00359-4
- P. Castillo, B. Cockburn, D. Schotzau, and C. Schwab, Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems, Mathematics of Computation, 71 (2002), 455-478.
- D.N. Arnold, F. Brezzi, B. Cockburn, and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM Journal on Numerical Analysis, 39 (2001), 1749-1779.
- B. Cockburn, J. Gopalakrishnan, and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM Journal on Numerical Analysis, 47 (2009), 1319-1365. https://doi.org/10.1137/070706616
- B. Cockburn, J. Gopalakrishnan, and F-J. Sayas, A projection-based error analysis of HDG methods, Mathematics of Computation, 79 (2010), 1351-1367. https://doi.org/10.1090/S0025-5718-10-02334-3
- B. Cockburn, W. Qiu, and K. Shi, Conditions for superconvergence of HDG methods for second-order elliptic problems, Mathematics of Computation, 81 (2012), 1327-1353. https://doi.org/10.1090/S0025-5718-2011-02550-0
- N.C. Nguyen, J. Peraire, and B. Cockburn, An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations, Journal of Computational Physics, 228 (2009), 3232-3254. https://doi.org/10.1016/j.jcp.2009.01.030
- N.C. Nguyen, J. Peraire, and B. Cockburn, An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations, Journal of Computational Physics, 228 (2009), 8841-8855. https://doi.org/10.1016/j.jcp.2009.08.030
- P. Grisvard, Elliptic problems in nonsmooth domains, Pitman, Boston, MA, 1985.
- P.G. Ciarlet, The finite element method for elliptic problems, Elsevier North-Holland, New York, 1978.