DOI QR코드

DOI QR Code

Codebook-Based Foreground-Background Segmentation with Background Model Updating

배경 모델 갱신을 통한 코드북 기반의 전배경 분할

  • Received : 2016.09.06
  • Accepted : 2016.10.20
  • Published : 2016.10.31

Abstract

Recently, a foreground-background segmentation using codebook model has been researched actively. The codebook is created one for each pixel in the image. The codewords are vector-quantized representative values of same positional training samples from the input image sequences. The training is necessary for a long time in the most of codebook-based algorithms. In this paper, the initial codebook model is generated simply using median operation with several image frames. The initial codebook is updated to adapt the dynamic changes of backgrounds based on the frequencies of codewords that matched to input pixel during the detection process. We implemented the proposed algorithm in the environment of visual c++ with opencv 3.0, and tested to some of the public video sequences from PETS2009. The test sequences contain the various scenarios including quasi-periodic motion images, loitering objects in the local area for a short time, etc. The experimental results show that the proposed algorithm has good performance compared to the GMM algorithm and standard codebook algorithm.

최근 코드북 기반의 전 배경 분리 알고리즘에 대한 연구가 활발히 진행되고 있다. 코드북은 입력 영상 시퀀스로부터 화소당 하나씩 만들어 지는데, 코드북 내의 각 코드워드는 동일 위치의 훈련 화소들을 대상으로 양자화를 수행한 클러스터 대표 벡터이다. 일반적인 코드북 기반 방법들은 초기 배경 모델 생성을 위하여 긴 시간동안 훈련 샘플들의 학습 과정을 거친다. 본 논문에서는 초기 몇 장의 프레임으로 부터 간단한 중위수 연산을 통하여 초기 배경 모델을 생성하고, 시간의 흐름에 따라 변화된 배경 정보를 포함할 수 있도록 코드워드의 사용 빈도수에 기반하여 배경 모델을 갱신한다. 제안한 알고리즘을 OpenCV 3.0과 연동하여 C언어로 구현하여 몇 개의 PETS2009 데이터에 적용 실험하였다. 해당 데이터는 준-주기적 움직임을 갖는 영상 시퀀스, 이동 물체의 일시 정지 등의 시나리오를 포함하고 있다. 실험을 통하여 제안한 방식이 GMM 알고리즘, 표준 코드북 알고리즘에 비하여 우수한 성능을 나타내고 있음을 확인하였다.

Keywords

References

  1. Y. Shim, H. Park, "A Study on the Surveillance System of Multiple Object's Dangerous Behaviors," Journal of Digital Contents Society, Vol.14, No.4, pp.455-462, 2013. https://doi.org/10.9728/dcs.2013.14.4.455
  2. H. Park, "A Study on Monitoring System for an Abnormal Behaviors by Object's Tracking," Journal of Digital Contents Society, Vol.14, No.4, pp.589-596, 2013. https://doi.org/10.9728/dcs.2013.14.4.589
  3. Stauffer C, Grimson WEL. "Adaptive background mixture models for real-time tracking." Proceedings of IEEE Conference on CVPR, pp. 246-252. 1999.
  4. Dalley G, Migdal J, Grimson WEL. "Background subtraction for temporally irregular dynamic textures." IEEE Workshop on Applications of Computer Vision, pp.1-7. 2008.
  5. X. Zhang, F. Liu, Z. Li. "An improved foreground object detection method based on Gaussian mixture models," IEEE International Conference on Multimedia Communications, pp. 90-93, 2010.
  6. J. Kim, K. Lee, T. Hwang, "Illumination influence minimization method for efficient object extraction," Journal of Digital Contents Society, Vol.14, No.1, pp. 117-124, 2013. https://doi.org/10.9728/dcs.2013.14.1.117
  7. K. Kim, T.H.Chalidabhongse, D. Harwood, L. Davis, "Real-time foreground-background segmentation using codebook model." Real-Time Imaging Vol.11, pp.172-185, 2005. https://doi.org/10.1016/j.rti.2004.12.004
  8. J. Jung, "Codebook-Based Foreground Extraction Algorithm with Continuous Learning of Background," Journal of Digital Contents Society , Vol.15, No.4, pp.449-455, 2014. https://doi.org/10.9728/dcs.2014.15.4.449
  9. M. Wu, X. Peng, "Spatio-temporal context for codebook-based dynamic background subtraction." International Journal of Electronics and Communications, Vol.64, No.8, pp.739-747, 2010. https://doi.org/10.1016/j.aeue.2009.05.004
  10. J.M. Guo, Y.F. Liu, C.H. Hsia, "Hierarchical method for foreground detection using codebook model," IEEE Transactions on Circuits and Systems for Video Technology, Vol.21, No.6, pp.804-815, 2011. https://doi.org/10.1109/TCSVT.2011.2133270
  11. S. Quan, T. Zhixing, H. Songchen, "Hierarchical codebook for background subtraction in MRF," Infrared Physics & Technology Vol.61, pp.259-264, 2013. https://doi.org/10.1016/j.infrared.2013.09.001
  12. http://pets2009.net

Cited by

  1. Real-Time Implementation of Human Detection in Thermal Imagery Based on CNN vol.17, pp.1, 2019, https://doi.org/10.14801/jkiit.2019.17.1.107
  2. 갯벌 영상에서 객체 검출을 위한 배경 모델링 vol.15, pp.3, 2020, https://doi.org/10.13067/jkiecs.2020.15.3.563
  3. A New Denoising Method for Time-lapse Video using Background Modeling vol.10, pp.2, 2020, https://doi.org/10.14801/jaitc.2020.10.2.125