DOI QR코드

DOI QR Code

Nanovesicles: Diagnostic and Therapeutic Tools in Nanoscale Medicine

  • Kim, Minji (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Kim, Moonjeong (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Kim, Kwang-sun (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University)
  • Received : 2016.11.02
  • Accepted : 2016.11.14
  • Published : 2016.11.30

Abstract

The use of nanovesicles (NVs) has contributed to nanotechnology in the development of new concept medicine to compete with diseases of deleterious and infectious to human health. Due to their properties of size, morphology, and biocompatibility NVs have great impact on public health especially in the development of new therapeutic and prophylaxis approaches in addition to the device for biosensors to diagnose human diseases. Recent data also strongly suggest that NVs are regarded as innovative materials in developing for vaccines and diagnostic tools. In this review, we focus on the basic concepts and recent applications of NVs to utilize or engineer them as therapeutic materials.

Keywords

References

  1. J. H. Kim, J. Lee, J. Park, and Y. S. Gho, Gram-negative and Gram-positive bacterial extracellular vesicles, Cell Dev. Biol. 40, 97 (2015). https://doi.org/10.1016/j.semcdb.2015.02.006
  2. L. Brown, J. M. Wolf, R. Prados-Rosales, and A. Casadevall, Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi, Nat. Rev. Microbiol. 13, 620 (2015). https://doi.org/10.1038/nrmicro3480
  3. M. Toyofuku, Y. Tashiro, Y. Hasegawa, M. Kurosawa, and N. Nomura, Bacterial membrane vesicles, an overlooked environmental colloid: Biology, environmental perspectives and applications, Advances in Colloid and Interface Science 226, 65 (2015). https://doi.org/10.1016/j.cis.2015.08.013
  4. R. I. Koning et al., Cryo-electron tomography analysis of membrane vesicles from Acinetobacter baumannii $ATCC19606^T$, Res. Microbiol. 164, 397 (2013). https://doi.org/10.1016/j.resmic.2013.02.007
  5. M. J. Kuehn and N. C. Kesty, Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev. 19, 2645 (2005). https://doi.org/10.1101/gad.1299905
  6. S. R. Schooling and T. J. Beveridge, Membrane vesicles: an overlooked component of the matrices of biofilms, J. Bacteriol. 188, 5945 (2006). https://doi.org/10.1128/JB.00257-06
  7. B. Gyorgy, et al., Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles, Cell. Mol. Life Sci. 68, 2667 (2011). https://doi.org/10.1007/s00018-011-0689-3
  8. S. E. L. Andaloussi, I. Mager, X. O. Breakefield, and M. J. Wood, Extracellular vesicles: biology and emerging therapeutic opportunities, Nat. Rev. Drug Discov. 12, 347 (2013). https://doi.org/10.1038/nrd3978
  9. S. Roier et al., A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria, Nat. Commun. 7, 10510 (2016). https://doi.org/10.1038/ncomms10510
  10. R. Crescitelli et al., Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes, J. Extracell. Vesicles 2, 1 (2012).
  11. A. Bergsmedh et al., Horizontal transfer of oncogenes by uptake of apoptotic bodies, Proc. Natl. Acad. Sci. U.S.A. 98, 6407 (2001). https://doi.org/10.1073/pnas.101129998
  12. M. Bellone et al., Processing of engulfed apoptotic bodies yields T cell epitopes, J. Immunol. 159, 5391 (1997).
  13. B. A. Cocca, A. M. Cline, and M. Z. Radic, Blebs and apoptotic bodies are B cell autoantigens. J. Immunol. 169, 159 (2002). https://doi.org/10.4049/jimmunol.169.1.159
  14. B. Gyorgy et al., Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles, Cell. Mol. Life Sci. 68, 2667 (2011). https://doi.org/10.1007/s00018-011-0689-3
  15. D. Ha, N. Yang, and V. Nadithe, Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges, Acta. Pharmaceutica Sinica. B 6, 287 (2016). https://doi.org/10.1016/j.apsb.2016.02.001
  16. T. Bridget et al., Microvesicle cargo and function changes upon induction of cellular transformation, J. Biol. Chem. 291, 19774 (2016). https://doi.org/10.1074/jbc.M116.725705
  17. R. M. Johnstone, Revisiting the road to the discovery of exosomes, Blood Cells Mol. Dis. 34, 214 (2005). https://doi.org/10.1016/j.bcmd.2005.03.002
  18. A. V. Vlassov, S. Magdaleno, R. Setterquist, and R. Conrad, Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials, Biochim. Biophys. Acta 1820, 940 (2012). https://doi.org/10.1016/j.bbagen.2012.03.017
  19. P. D. Robbins and A. E. Morelli, Regulation of immune responses by extracellular vesicles, Nat. Rev. Immunol. 14, 195 (2014). https://doi.org/10.1038/nri3622
  20. G. Raposo and W. Stoorvoge, Extracellular vesicles: exosomes, microvesicles, and friends, J. Cell Biol. 200, 373 (2013). https://doi.org/10.1083/jcb.201211138
  21. M. F. Haurat, W. Elhenawy, and M. F. Feldman, Prokaryotic membrane vesicles: New insights on biogenesis and biological roles, Biol. Chem. 396, 95 (2015).
  22. E. Y. Lee et al., Gram-positive bacteria produce membrane vesicles: Proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles, Proteomics 9, 5425 (2009). https://doi.org/10.1002/pmic.200900338
  23. A. F. Ellen et al., Proteomic analysis of secreted membrane vesicles of archaeal Sulfolobus species reveals the presence of endosome sorting complex components. Extremophiles 13, 67 (2009). https://doi.org/10.1007/s00792-008-0199-x
  24. A. F. Ellen, B. Zolghadr, A. M. Driessen, and S. V. Albers, Shaping the archaeal cell envelope, Archaea, 608243, (2010).
  25. Y. Lee, S. El Andaloussi, and M. J. Wood, Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy, Hum. Mol. Genet. 21, 125 (2012). https://doi.org/10.1093/hmg/dds317
  26. Y. J. Yoon, O. Y. Kim, and Y. S. Gho, Extracellular vesicles as emerging intercellular communicasomes, BMB Rep. 47, 531 (2014). https://doi.org/10.5483/BMBRep.2014.47.10.164
  27. E. Torres-Sangiao, A. M. Holban, and M. C. Gestal, Advaced nanobiomaterials: vaccines, diagnosis and treatment of infectious diseases, Molecules 21, 1 (2016).
  28. B. M. Bella, I. D. Kirka, S. Hiltbrunner, S. Gabrielsson, and J. J. Bultema, Designer exosomes as next-generation cancer immunotherapy, Nanomedicine 12, 163 (2016). https://doi.org/10.1016/j.nano.2015.09.011
  29. J. Rivera et al., Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins, Proc. Natl. Acad. Sci. U.S.A. 107, 19002 (2010). https://doi.org/10.1073/pnas.1008843107
  30. A. Olaya-Abril et al., Characterization of protective extracellular membrane-derived vesicles produced by Streptococcus pneumoniae, J. Proteomics 106, 46 (2014). https://doi.org/10.1016/j.jprot.2014.04.023
  31. G. Vernikos and D. Medini, Bexsero(R) chronicle, Pathog Glob. Health 108, 305 (2014). https://doi.org/10.1179/2047773214Y.0000000162
  32. W. H. Lee et al., Vaccination with Klebsiella pneumoniae-derived extracellular vesicles protects against bacteria-induced lethality via both humoral and cellular immunity, Exp. Mol. Med. 47, e183 (2015). https://doi.org/10.1038/emm.2015.59
  33. X. Liang et al., Development of self-assembling peptide nanovesicle with bilayers for enhanced EGFR-targeted drug and gene delivery, Biomaterials 82, 194 (2016). https://doi.org/10.1016/j.biomaterials.2015.12.015
  34. S. Ohno, G. P. Drummen, and M. Kuroda, Focus on extracellular vesicles: development of extracellular vesicle-based therapeutic systems, Int. J. Mol. Sci. 17, 172 (2016). https://doi.org/10.3390/ijms17020172
  35. E. V. Batrakova, Using exosomes, naturally-equipped nanocarriers, for drug delivery, J. Control. Release 219, 396 (2015). https://doi.org/10.1016/j.jconrel.2015.07.030
  36. A. Thind and C. Wilson, Exosomal miRNAs as cancer biomarkers and therapeutic targets, J. Extracell. Vesicles 5, 31292 (2016). https://doi.org/10.3402/jev.v5.31292
  37. B. K. Thakur, et al., Double-stranded DNA in exosomes: a novel biomarker in cancer detection, Cell Res. 24, 766 (2014). https://doi.org/10.1038/cr.2014.44
  38. G. Rabinowits, C. Cicek Gercel-Taylor, J. M. Day, D. D. Taylor, and G. H. Kloecker, Exosomal microRNA: a diagnostic marker for lung cancer, Clin.Lung Cancer 10, 42 (2009). https://doi.org/10.3816/CLC.2009.n.006
  39. Douglas D. Taylor, Cicek Gercel-Taylor, MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer, Gynecol. Oncol. 110, 13 (2008). https://doi.org/10.1016/j.ygyno.2008.04.033
  40. J. L. Welton, et al., Proteomics analysis of vesicles isolated from plasma and urine of prostate cancer patients using a multiplex, aptamer-based protein array, J. Extracell. Vesicles 5, 31209 (2016). https://doi.org/10.3402/jev.v5.31209
  41. H. Zhou, et al., Exosomal fetuin-A identified by proteomics: a novel urinary biomarker for detecting acute kidney injury, Kidney Int. 70, 1847 (2006). https://doi.org/10.1038/sj.ki.5001874
  42. M. Herreros-Villanueva and L. Bujanda, Glypican-1 in exosomes as biomarker for early detection of pancreatic cancer, Ann. Transl. Med. 4, 64 (2016). https://doi.org/10.21037/atm.2016.10.39
  43. J. H. Lim et al., Nanovesicle-Based Bioelectronic Nose for the Diagnosis of Lung Cancer from Human Blood, Adv. Healthcare. Mater. 3, 360 (2014). https://doi.org/10.1002/adhm.201300174