DOI QR코드

DOI QR Code

Fatigue Life Analysis and Prediction of 316L Stainless Steel Under Low Cycle Fatigue Loading

저사이클 피로하중을 받는 316L 스테인리스강의 피로수명 분석 및 예측

  • Oh, Hyeong (Dept. of Mechanical Engineering, Hanyang Univ.) ;
  • Myung, NohJun (Dept. of Mechanical Engineering, Hanyang Univ.) ;
  • Choi, Nak-Sam (Dept. of Mechanical Engineering, Hanyang Univ.)
  • 오혁 (한양대학교 기계공학과) ;
  • 명노준 (한양대학교 기계공학과) ;
  • 최낙삼 (한양대학교 기계공학과)
  • Received : 2016.06.01
  • Accepted : 2016.09.11
  • Published : 2016.12.01

Abstract

In this study, a strain-controlled fatigue test of widely-used 316L stainless steel with excellent corrosion resistance and mechanical properties was conducted, in order to assess its fatigue life. Low cycle fatigue behaviors were analyzed at room temperature, as a function of the strain amplitude and strain ratio. The material was hardened during the initial few cycles, and then was softened during the long post period, until failure occurred. The fatigue life decreased with increasing strain amplitude. Masing behavior in the hysteresis loop was shown under the low strain amplitude, whereas the high strain amplitude caused non-Masing behavior and reduced the mean stress. Low cycle fatigue life prediction based on the cyclic plastic energy dissipation theory, considering Masing and non-Masing effects, showed a good correlation with the experimental results.

내식성과 기계적 성능이 우수한 316L 스테인리스 강의 저주기 변형률제어 피로시험에서 3가지 변형률진폭과 3가지 변형률비의 조건이 피로수명에 미치는 효과를 분석하였다. 낮은 변형률범위에서 곡선이 거의 중첩되는 Masing 거동이 나타나고, 높은 변형률범위에서 비선형거동 응력범위가 서로 크게 벗어나는 non-Masing 거동과 함께 평균응력의 감소가 나타났다. 소성 변형률에너지를 이용하여 저주기 피로수명을 예측하고 non-Masing 거동을 고려한 수명예측 방법의 정확성 여부를 검토하였다. 각각의 변형률진폭과 변형률비의 조건에서 초기 수 사이클 동안 반복경화 현상 후 장시간동안 점진적으로 낮아져 연화하다가 파괴 되었다. 저사이클 피로수명을 정확히 예측하기 위해서는 변형률진폭에 따라 Masing 및 non-Masing 거동을 구분하고, 이를 반영한 수명예측식을 적용해야 함을 알았다.

Keywords

References

  1. Srinivasan, V. S., Valsan, M., Sandhya, R., Bhanu Sankara Rao, K., Mannan, S. L. and Sastry, D. H., 1999, "High Temperature Time-dependent Low Cycle Fatigue Behaviour of a Type 316L(N) Stainless Steel," Int. J. Fatigue, Vol. 21, pp. 11-21. https://doi.org/10.1016/S0142-1123(98)00052-8
  2. Valsan, M., Nagesha, A., Bhanu Sankara Rao, K. and Mannan, S. L., 2000, "A Comparative Evaluation of Low Cycle Fatigue and Creep-fatigue Interaction Behaviour of 316L(N) SS, Weld Metal and 316L(N)/316 Weld Joint at 873K," Trans Indian Inst. Metals, 53, pp. 263-271.
  3. Mannan, S. L. and Valsan, M., 2006, "High-temperature Low Cycle Fatigue, Creep-fatigue and Thermomechanical Fatigue of Steels and Their Welds," Int. J. Mech. Sci, 48, pp. 160-175. https://doi.org/10.1016/j.ijmecsci.2005.08.004
  4. Coffin, L. F., 1954, "A Study of the Effects of Cyclic Thermal Stress on a Ductile Metal," Trans ASME, 76, pp. 931-950.
  5. Manson, S. S., 1953, "Behavior of Materials under Conditions of Thermal Stress," Michigan: Heat Transfer Symposium, University of Michigan Engineering Research Institute.
  6. Halford, G. R., 1966, "The Energy Required for Fatigue," J Mater, 1(1), pp. 3-18.
  7. Morrow, J., 1965, "Cyclic Plastic Strain Energy and Fatigue of Metals," ASTM STP 378, pp. 45-84.
  8. Morrow, J., 1968, "Fatigue Design Handbook, Advances in Engineering," Society of Automotive Engineers. Warrendale. Pa, Vol. 4, Sec. 3. 2, pp. 21-29.
  9. Smith, R. N., Watson, P. and Topper, T. H., 1970, "A Stress-strain Function for the Fatigue of Metal," J Mater, 5(4), pp. 767-78.
  10. Lorenzo, F. and Laird, C., 1984, "A New Approach to Predicting Fatigue Life Behavior under the Action of Mean Stresses," Mater. Sci. Eng, 62, pp. 205-210. https://doi.org/10.1016/0025-5416(84)90223-4
  11. Kwofie, S., 2001, "An Exponential Stress Function for Predicting Fatigue Strength and Life due to Mean Stresses," Int J Fatigue, Vol. 23, No. 9, pp. 829-36. https://doi.org/10.1016/S0142-1123(01)00044-5
  12. Koh, S. K., 2002, "Fatigue Damage Evaluation of a High Pressure Tube Steel using Cyclic Strain Energy Density," J Pressure Vessel Technol, 79, pp. 791-798. https://doi.org/10.1016/S0308-0161(02)00135-7
  13. Ye, D., Matsuoka, S., Nagashima, N. and Suzuki, N., 2006, "The Low Cycle Fatigue, Deformation and Final Fracture of an Austenitic Stainless Steel," Mater. Sci. Eng, A. 415, pp. 104-117. https://doi.org/10.1016/j.msea.2005.09.081
  14. Sivaprasad, S., Paul, S. K., Das, A., Narasiah, N. and Tarafder, S., 2010, "Cyclic Plastic Behaviour of Primary Heat Transport Piping Materials: Influence of Loading Schemes on Hysteresis Loop," Mater. Sci. Eng, A. 527, pp. 6858-6869. https://doi.org/10.1016/j.msea.2010.07.041
  15. Hong, S. G., Yoon, S. S. and Lee, S. B., 2004, "The Influence of Temperature on Low Cycle Fatigue Behavior of Prior Cold Worked 316L Stainless Steel (1) - Monotonic and Cyclic Behavior -," Trans.Korea Soc. Mech. Eng. A, Vol. 28, No. 4, pp. 333-342. https://doi.org/10.3795/KSME-A.2004.28.4.333
  16. Ellyin, F., 1985, "Effect of Tensile-Mean-Strain on Plastic Strain Energy and Cyclic Response," J. Eng. Mater. Techno, Vol. 107(2), pp. 119-125. https://doi.org/10.1115/1.3225786
  17. Wittke, H., Olfe, J. and Rie, K. T., 1997, "Description of Stress-strain Hysteresis Loops with a Simple Approach," Int. J. Fatigue, Vol. 19, No. 2, pp. 141-149. https://doi.org/10.1016/S0142-1123(96)00059-X
  18. Jhansale, H. R. and Topper, T. H., 1973, "Engineering Analysis of the Inelastic Stress Response of a Structural Metal Under Variable Cyclic Strains," ASTM STP-519, pp. 246-270.
  19. Sachs, G., Gerberich, W. W., Weiss, V. and Latorre, J. V., 1960, "Low-cycle Fatigue of Pressure Vessel Materials," ASTM, Vol. 60, pp. 512-529.
  20. Mughrabi, H. and Christ, H. J., 1997, "Cyclic Deformation and Fatigue of Selected Ferritic and Austenitic Steels: Specific Aspects," ISIJ Int, 37, pp. 1154-1169. https://doi.org/10.2355/isijinternational.37.1154
  21. Murakami, Y., 2002, "Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions," Elsevier, pp. 185-192.