DOI QR코드

DOI QR Code

Electrochemical Impedance Study for Selective Dissolution of a Cu-Zn Alloy

  • Hoshi, Y. (Department of Pure and Applied Chemistry, Faculty of Industrial Science and Technology, Tokyo University of Science) ;
  • Tabei, K. (Department of Pure and Applied Chemistry, Faculty of Industrial Science and Technology, Tokyo University of Science) ;
  • Shitanda, I. (Department of Pure and Applied Chemistry, Faculty of Industrial Science and Technology, Tokyo University of Science) ;
  • Itagaki, M. (Department of Pure and Applied Chemistry, Faculty of Industrial Science and Technology, Tokyo University of Science)
  • 투고 : 2016.09.22
  • 심사 : 2016.11.29
  • 발행 : 2016.12.31

초록

The anodic dissolution behavior of copper and brass in an electrolyte solution of 0.5M NaCl containing 0.5 mM $NaHCO_3$ was investigated by electrochemical impedance spectroscopy. The Nyquist plots of the copper impedance described a small loop in the high-frequency range and a large locus in the low-frequency range. Additionally, the features of the impedance spectrum of the brass were similar to those of the copper. This indicates that the copper-enriched layer formed on the brass surface due to the selective dissolution of the zinc from the surface. In addition, the rest potential and the anodic polarization curve for each sample were measured in order to discuss the selective dissolution of the zinc from the brass surface.

키워드

참고문헌

  1. H. W. Pickering, C. Wagner, J. Electrochem. Soc., 114, 698 (1967). https://doi.org/10.1149/1.2426709
  2. H. G. Feller, Corros. Sci., 8, 259 (1968). https://doi.org/10.1016/S0010-938X(68)90211-4
  3. H. W. Pickering, J. Electrochem. Soc., 115, 143 (1968). https://doi.org/10.1149/1.2411048
  4. H. W. Pickering, J. Electrochem. Soc., 115, 690 (1968). https://doi.org/10.1149/1.2411403
  5. H. W. Pickering, and P. J. Byrne, J. Electrochem. Soc., 116, 1492 (1969). https://doi.org/10.1149/1.2411582
  6. V. G. Ereneta, Corros. Sci., 19, 507 (1979). https://doi.org/10.1016/S0010-938X(79)80056-6
  7. A. P. Pchelnikov, A. D. Sitnikov, I. K. Marshakov, and V. V. Losev, Electrochim. Acta, 26, 591 (1981). https://doi.org/10.1016/0013-4686(81)80025-4
  8. A. V. Polunin, A. P. Pchelnikov, V. V. Losev, and I. K. Marshakov, Electrochim. Acta, 27, 467 (1982). https://doi.org/10.1016/0013-4686(82)85025-1
  9. M. J. Pryor and K. K. Giam, J. Electrochem. Soc., 129, 2157 (1982). https://doi.org/10.1149/1.2123467
  10. M. J. Pryor and J. C. Fister, J. Electrochem. Soc., 131, 1230 (1984). https://doi.org/10.1149/1.2115793
  11. S. L. F. A. Dacosta, S. M. L. Agostinho, and K. Nobe, J. Electrochem. Soc., 140, 3483 (1993). https://doi.org/10.1149/1.2221114
  12. V. Maurice, L. H. Klein, H. H. Strehblow, and P. Marcus, J. Electrochem. Soc., 150, B316 (2003). https://doi.org/10.1149/1.1576225
  13. I. Milosev and H. H. Strehblow, J. Electrochem. Soc., 150, B517 (2003). https://doi.org/10.1149/1.1615997
  14. M. Itagaki, M. Tagaki, and K. Watanabe, Electrochim. Acta, 41, 1201 (1996). https://doi.org/10.1016/0013-4686(95)00471-8
  15. M. Itagaki, M. Tagaki, and K. Watanabe, Corros. Sci., 38, 1109 (1996). https://doi.org/10.1016/0010-938X(96)00006-6
  16. M. Itagaki, M. Tagaki, T. Mori, and K. Watanabe, Corros. Sci., 38, 601 (1996). https://doi.org/10.1016/0010-938X(95)00149-E
  17. Y. Hoshi, T. Yoshida, A. Nishikata, and T. Tsuru, Electrochim. Acta, 56, 5302 (2011). https://doi.org/10.1016/j.electacta.2011.04.007
  18. Y. Hoshi, R. Ozawa, E. Tada, A. Nishikata, and T. Tsuru, Corros. Sci., 65, 512 (2012). https://doi.org/10.1016/j.corsci.2012.08.058