DOI QR코드

DOI QR Code

겨울논 유채와 보리 재배시 전과정평가 방법을 이용한 환경영향 비교 평가

Comparative Evaluation for Environmental Impact of Rapeseed and Barley Cultivation in Paddy Field for Winter using Life Cycle Assessment

  • 홍승길 (국립농업과학원 농업환경부) ;
  • 신중두 (국립농업과학원 농업환경부) ;
  • 박광래 (국립농업과학원 농업환경부) ;
  • 안민실 (국립농업과학원 농업환경부) ;
  • 옥용식 (강원대학교 바이오자원환경학과) ;
  • 김정규 (고려대학교 환경생태공학부) ;
  • 김석철 (국립농업과학원 농업환경부)
  • Hong, Seung-Gil (Department of Agricultural Environment, National Institute of Agricultural Sciences) ;
  • Shin, JoungDu (Department of Agricultural Environment, National Institute of Agricultural Sciences) ;
  • Park, Kwang-Lai (Department of Agricultural Environment, National Institute of Agricultural Sciences) ;
  • Ahn, Min-Sil (Department of Agricultural Environment, National Institute of Agricultural Sciences) ;
  • Ok, Yong-Sik (School of Environment, Kangwon National University) ;
  • Kim, Jeong-Gyu (Environmental Science and Ecological Engineering, Korea University) ;
  • Kim, Seok-Cheol (Department of Agricultural Environment, National Institute of Agricultural Sciences)
  • 투고 : 2016.11.15
  • 심사 : 2016.12.06
  • 발행 : 2016.12.30

초록

벼 수확 후 겨울철 휴경논에서 유채 재배 시스템의 환경영향을 평가하고 경쟁 작물인 보리 재배 시스템의 환경영향과 비교 분석하기 위하여 전과정 평가방법을 적용하였다. 투입물질에 대한 자료를 수집하고 유채 및 보리 1 ton을 기능단위로 하여 분석하였다. 전과정 영향평가를 위해서는 체계화가 잘 되어있고 규칙적으로 적용된 영향평가 방법인 Eco-indicator 95 방법을 사용하였다. 생산물 1 ton당 발생하는 영향범주별 비교에서는 온실가스 등 6개 영향범주에서 보리보다 유채의 포텐셜이 높게 나타났는데 이 중 화학비료 사용에 의한 환경부하가 전체 발생량의 65-96%를 차지하고 있었다. 부영양화 포텐셜은 오히려 유채보다 보리에서 높게 나타났다. 보리와 유채 재배에서 중금속에 의한 부하가 0.5 Pt로 상대적으로 가장 크게 나타났으나 전체 영향범주값을 합산하게 되면 보리에서 0.78 Pt, 유채에서 0.82 Pt로 나타났다. 시비-수확량 반응 시험에 대한 평가에서 보리는 시비량이 증가할수록 환경부하가 계속 증가하는 것으로 나타났으나 유채는 시비량에 따라 증가하다가 최고 생산량을 보인 R3(80-65-65)에서는 오히려 감소하였다. 이와 같은 결과를 토대로 겨울 휴경논에 유채를 재배할 경우 환경 영향 범주 8개 중 6개 범주에서 기존의 보리를 재배하는 과정에 비해 환경부하량은 더 크다고 할 수 있지만 환경지수값으로 환산하게 되면 휴경지에서 유채와 보리 재배를 통한 환경영향에는 차이가 없을 것으로 판단되었다.

The application of the Life Cycle Assessment (LCA) methodology to assess the environmental impact of rapeseed cultivation in winter fallow after harvesting rice was investigated and compared with barley cultivation in crop rotation system. Data for input materials were collected and analyzed by 1 ton rapeseed and barley as functional unit. For the Life Cycle Impact Assessment (LCIA) the Eco-indicator 95 method has been chosen because this is well documented and regularly applied impact method. From the comparison of impact categories such as greenhouse effect, ozone depletion, acidification, heavy metals, carcinogens, summer smog, and energy resources for 1 ton of final product, emission potential from rapeseed was higher than that from barley. The range from 65 to 96% of these potential came from chemical fertilizer. On the other hand, eutrophication potential from barley was higher than that from rapeseed, mainly came from utilizing the chemical fertilizer. During the cultivation of barley and rape, environmental burden by heavy metals was evaluated by 0.5 Pt, larger than points from other impact categories. The sum of points from all impact categories in barley and rapeseed was calculated to be 0.78 Pt and 0.82 Pt, respectively. From the sensitivity analysis for barley and rapeseed, scenario 1 (crop responses to fertilization level) showed the environmental burden was continuously increased with the amount of fertilization in barley cultivation, while it was not increased only at the optimum crop responses to fertilization in rapeseed (R3). With these results, rapeseed cultivation in winter fallow paddy contributed to the amounts of environmental burden much more than barley cultivation. It is, however, highly determined that environmental weighted point resulted from evaluating both cultivation was not significantly different.

키워드

참고문헌

  1. GIR, "National greenhouse gas inventory report of Korea", Greenhouse Gas Inventory and Research Center (2015).
  2. Shin, M.H., Choi, Y.H., Jang, J.R., Lee, S.I. and Choi, J.D., "Estimation of NPS pollution loads from upland field by climate change impact", Annual meeting on korea water resources association, pp. 197-201. (2013).
  3. Kang, H.C., "Assessment and outlook for feasibility of korean biofuel-cost/ benefit analysis", SERI (2007).
  4. Jensen, A. A., Hoffman, L., Moller, B. T., Schmidt, A., Christiansen, K., Eikington, J. and van Dijk, F., "Life Cycle Assessment (LCA)-A guide to approaches, experiences and information sources", European Environmental Agency. (1997).
  5. ISO. "Environmental management-Life cycle assessment-Principles and framework (ISO 14040:2006)". International Organization for Standardization(ISO). (2006).
  6. Brentrup, F., K sters, J., Kuhlmann, H. and Lammel, J., "Application of the life cycle assessment methodology to agricultural production: an example of sugar beet production with different forms of nitrogen fertilizers", European Journal of Agronomy 14(3), pp. 221-233. (2001). https://doi.org/10.1016/S1161-0301(00)00098-8
  7. Casey, J. W. and Holden, N. M., "Analysis of greenhouse gas emissions from the average Irish milk production system", Agr. Syst. 86, pp. 97-114. (2005). https://doi.org/10.1016/j.agsy.2004.09.006
  8. Cowell, S. J. and Clift, R., "A methodology for assessing soil quantity and quality in life cycle assessment", Journal of Cleaner Production 8, pp. 321-331. (2000). https://doi.org/10.1016/S0959-6526(00)00023-8
  9. G rtner, S. O., Reinhardt, G. A., and Braschkat, J., "Life cycle assessment of biodiesel: update and new approach", Institute for Energy and Environmental Research (IFEU): Heidelberg, Germany. (2003).
  10. Heller, M. C., Keoleian, G. A. and Volk, T. A., "Life cycle assessment of a willow bioenergy cropping system", Biomass and bioenergy 25, pp. 147-165. (2003). https://doi.org/10.1016/S0961-9534(02)00190-3
  11. NIAES, "Life Cycle Assessment for Environmentally Sustainable Agriculture", Report on the Environmental Research Project, NIAES (National Institute for Agro-Environmental Sciences), Ibaraki, Japan. (2003).
  12. Kye, B.M. and Min, K.S., "Field Trial for proper application of NPK for barley", Research Project Report in 1969(Field Crop), RDA. pp. 978-987. (1969).
  13. Kye, B.M. and Lee, J.I., "Field Trial for proper application of NPK for rapeseed cropping after rice harvest", Research Project Report in 1968: Special Crop, RDA. pp. 878-908. (1969).
  14. Kye, B.M. and Lee, J.I., (1969b) "Field Trial for proper application of NPK for rapeseed cultivation in upland", Research Project Report in 1968: Special Crop, RDA. pp. 909-938. (1969).
  15. Koga, N., Sawamoto, T., Tsuruta, H., "Life cycle inventory-based analysis of greenhouse gas emissions from arable land farming systems in Hokkaido, northern Japan", Soil Science & Plant Nutrition, 52, pp. 564-574. (2006). https://doi.org/10.1111/j.1747-0765.2006.00072.x
  16. Koga, N., Tsurutab, H., Tsujia, H., Nakano, H., "Fuel consumption-derived $CO_2$ emissions under conventional and reduced tillage cropping systems in northern Japan", Agriculture, Ecosystems & Environment, 99, pp. 213-219. (2003). https://doi.org/10.1016/S0167-8809(03)00132-4
  17. Goedkoop, M., Spriensma, R., "The Eco-indicator 99, A damage oriented method for life cycle impact assessment", Methodology report, PRe, Amersfoort. (2001).
  18. Goedkoop, M, "The Eco-Indicator 95, Final report", National Reuse of Waster Research Programme, Pre Consultants, Amersfoort. (1995)
  19. Lee, I.G., "Status and outlook of chemical fertilizer", Symposium on development of the fertilizer industry for environmental-friendly agriculture practice. (2010).
  20. Flynn, H.C. and Smith, P., "Greenhouse gas budgets of crop production-current and likely future trends", International Fertilizer Industry Association (IFA), Paris, France. (2010).
  21. Udo de Haes, H.A., and Jolliet, O., "How does ISO/Dis 14042 on life cycle impact assessment accommodate current best available particle?", Int. J. LCA, 4(2) pp. 75-80. (1999). https://doi.org/10.1007/BF02979404
  22. Tsuruta, H., "Methane and nitrous oxide emissions from rice paddy fields", 17th World Congress of Soil Science, 14-21 August 2002, Thailand. (2002).