DOI QR코드

DOI QR Code

Behavior of 550MPa 43mm Hooked Bars Embedded in Beam-Column Joints

보-기둥 접합부에 정착된 550 MPa 43 mm 갈고리철근의 거동

  • Bae, Min-Seo (Division of Architecture and Urban Design, Incheon National University) ;
  • Chun, Sung-chul (Division of Architecture and Urban Design, Incheon National University) ;
  • Kim, Mun-Gil (Division of Architecture and Urban Design, Incheon National University)
  • Received : 2016.06.29
  • Accepted : 2016.07.26
  • Published : 2016.10.30

Abstract

In the construction of nuclear power plants, only 420 MPa reinforcing bars are allowed and, therefore, so many large-diameter bars are placed, which results in steel congestion. Consequently, re-bar works are difficult and the quality of RC structures may be deteriorated. To solve the steel congestion, 550 MPa bars are necessary. Among many items for verifying structural performance of reinforced concrete with 550 MPa bars, the 43 mm hooked bars are examined in this study. All specimens failed by side-face blowout and the side cover explosively spalled at maximum loads. The bar force was initially transferred to the concrete primarily by bond along a straight portion. At the one third of maximum load, the bond reached a peak capacity and began to decline, while the hook bearing component rose rapidly. At failure, most load was resisted by the hook bearing. For confined specimens with hoops, the average value of test-to-prediction ratios by KCI code is 1.45. The modification factor of confining reinforcement which was not allowed for larger than 35 mm bars can be applied to 43 mm hooked bars. For specimens with 70 MPa concrete, the average value of test-to-prediction ratios by KCI code is 1.0 which is less than the values of the other specimens. The effects of concrete compressive strength should be reduced. An equation to predict anchorage capacity of hooked bars was developed from regression analysis including the effects of compressive strength of concrete, embedment length, side cover thickness, and transverse reinforcement index.

철근항복강도가 420 MPa만 사용되는 원자력발전소는 대구경 철근이 과밀 배근되어 정밀시공이 어렵고 콘크리트구조물의 품질저하가 우려된다. 과밀배근 해소를 위해 항복강도 550 MPa 철근의 사용이 필요하다. 이 연구에서는 550 MPa 고강도철근의 실용화를 위해 요구되는 여러 검토 항목 중, 철근과 콘크리트 일체 거동을 위해 필요한 43 mm 갈고리철근의 정착거동을 실험적으로 평가하였다. 실험체 모두 목표했던 측면파열파괴가 발생하여, 최대하중에서 측면 피복두께가 급격히 탈락하였다. 가력 초기에는 대부분의 하중을 직선구간의 부착에 의해 지지하였으나, 최대 하중의 1/3 지점부터 부착에 의한 기여도가 저감되기 시작하여 최대 하중에서는 대부분 갈고리 지압에 의해 하중을 지지하였다. 횡보강철근이 있는 실험체에서 [실험값]/[콘크리트구조기준 예측값] 비율의 평균이 1.45였다. 35 mm 초과 철근에 적용이 금지된 횡보강철근에 대한 보정계수 0.8을 적용하여도 안전한 갈고리 정착이 가능하다. 고강도콘크리트를 사용한 경우에는 [실험값]/[콘크리트구조기준 예측값]의 비율이 1.0로 다른 경우에 비해 안전율이 부족하였다. 콘크리트강도의 제곱근에 비례하는 콘크리트구조기준은 고강도 콘크리트에서 안전측이 아니므로 콘크리트 압축강도에 대한 영향을 저감시킬 필요가 있다. 실험결과를 회귀분석하여, 콘크리트 압축강도, 묻힘길이, 측면피복두께, 횡보강철근의 영향을 고려한 갈고리철근 정착강도 평가식을 개발하였다. 13개 실험데이터와 비교한 결과, [실험값]/[예측값] 비 평균이 1.0, 변동계수가 10%로 매우 정확히 강도를 예측하였다.

Keywords

References

  1. Korea Electric Power Industry Code, "SNB Nuclear Safety Related Structures-Concrete Containments", 2010, Seoul, Korea Electric Association, pp.244.
  2. Korea Electric Power Industry Code, "SNC Nuclear Safety Related Structures-uclear Safety-Related Concrete Structures", Korea Electric Association, Seoul, 2010, pp.182.
  3. ACI Committee 349, Code Requirements for Nuclear Safety-Related Concrete Structures (ACI 349-13) and Commentary, American Concrete Institute, Farmington Hills, MI, 2014, 196 pp.
  4. ASME Boiler & Pressure Vessel Code III Division 2, Code for Concrete Reactor Vessels and Containments, 2010, 184 pp.
  5. Korea Concrete Institute, Concrete Design Code, Kimoondang Publishing Company, Seoul, 2012, pp. 221-240.
  6. KS D 3504:2016, Steel Bars for Concrete Reinforcement, Korean Agency for Technology and Standards, 2016, 31 pp.
  7. ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary, ACI, Farmington Hills, Mich., 2014, 492 pp.
  8. Minor, J., and Jirsa, J., "Behavior of Bent Bar Anchorages in Beam-Column Joints," ACI Journal, Proceedings, Vol. 72, No.4, Mar.-Apr., 1975, pp. 141-149.
  9. Marques, J. L., and Jirsa, J. O., 1975, "A Study of Hooked Bar Anchorages in Beam-Column Joints," ACI Journal, Proceedings, Vol. 72, No. 5, May-Jun., pp. 198-209.
  10. Pinc, P., Watkins, M., and Jirsa, J., 1977, The Strength of the Hooked Bar Anchorages in Beam-Column Joints, CESRL Report No. 77-3, Department of Civil Engineering-Structures Research Laboratory, University of Texas, Austin, Texas, 67 pp.
  11. Ramirez, J. A., and Russell, B. W., 2008, Transfer, Development, and Splice Length for Strand/reinforcement in High-strength Concrete, Washington, D.C.: Transportation Research Board, National Research Council, pp. 99-120.
  12. Jayne Sperry, Samir Al-Yasso, Nathaniel Searle, Michael DeRubeis, David Darwin, Matthew O'Reilly, Adofo Matamoros, Lisa Feldman, Andres Lepage, Remy Lequesne, and Ali Ajaam, Anchorage of High-Strength Reinforcing Bars with Standard Hooks, SM Report No. 111, June 2015, University of Kansas Center for Research, INC., 243pp.
  13. Orangun, C. O., Jirsa, J. O., and Breen, J. E., "A Reevaluation of Test Data on Development Length and Splices", ACI Journal, Proceedings, Vol.74, No.3, 1977, pp.114-122.
  14. Jirsa, J. O., Lutz, L. A., and Gergely, P., "Rationale for Suggested Development, Splice, and Standard Hook Provisions for Deformed Bars in Tension," Concrete International, Vol.1, No.7, 1979, pp.47-61.
  15. ACI Committee 352, Recommendations for Design of Beam-Column Connections in Monolithic Reinforced Concrete Structures, ACI, Farmington Hills, Mich., 2002, pp.38.
  16. Furche, J. and Eligehausen, R., "Lateral Blow-Out Failure of Headed Studs Near a Free Edge," Anchors in Concrete-Design and Behavior, SP-130, 1991, American Concrete Institute, Farmington Hills, MI., pp.235-52.
  17. ACI Committee 408, "Bond and Development of Straight Reinforcing Bars in Tension (ACI 408R-03)," ACI, Farmington Hills, Mich., 2003, pp.49.

Cited by

  1. Development Length of Standard Hooked Bar Based on Non-Uniform Bond Stress Distribution vol.114, pp.6, 2017, https://doi.org/10.14359/51700918