References
- Aronszajn N (1950). Theory of reproducing kernels, Transactions of the American Mathematical Society, 68, 337-404. https://doi.org/10.1090/S0002-9947-1950-0051437-7
- Bochner S (1959). Lectures on Fourier Integral, Princeton University Press, Princeton, New Jersey.
- Carroll RJ and Hall P (1988). Optimal rates of convergence for deconvoluting a density, Journal of the American Statistical Association, 83, 1184-1886. https://doi.org/10.1080/01621459.1988.10478718
- Fan J (1991). On the optimal rates of convergence for nonparametric deconvolution problem, Annals of Statistics, 19, 1257-1272. https://doi.org/10.1214/aos/1176348248
- Fan J (1992). Deconvolution with supersmooth distribution, Canadian Journal of Statistics, 20, 159-169.
- Girosi F (1998). An equivalence between sparse approximation and support vector machines, Neural Computation, 10, 1455-1480. https://doi.org/10.1162/089976698300017269
- Gunn SR (1998). Support vector machines for classification and regression, Technical report, University of Southampton.
- Hall P and Qiu P (2005). Discrete-transform approach to deconvolution problems, Biometrika, 92, 135-148. https://doi.org/10.1093/biomet/92.1.135
- Hazelton ML and Turlach BA (2009). Nonparametric density deconvolution by weighted kernel estimators, Statistics and Computing, 19, 217-228. https://doi.org/10.1007/s11222-008-9086-7
- Lee S (2010). A support vector method for the deconvolution problem, Communications of the Korean Statistical Society, 17, 451-457. https://doi.org/10.5351/CKSS.2010.17.3.451
- Lee S (2012). A note on deconvolution estimators when measurements errors are normal, Communications of the Korean Statistical Society, 19, 517-526. https://doi.org/10.5351/CKSS.2012.19.4.517
- Lee S and Taylor RL (2008). A note on support vector density estimation for the deconvolution problem, Communications in Statistics: Theory and Methods, 37, 328-336. https://doi.org/10.1080/03610920701653086
- Mendelsohn J and Rice R (1982). Deconvolution of microfluorometric histograms with B splines, Journal of the American Statistical Association, 77, 748-753.
- Mercer J (1909). Functions of positive and negative type and their connection with the theory of integral equations, Philosophical Transactions of the Royal Society of London, A 209, 415-446. https://doi.org/10.1098/rsta.1909.0016
- Moguerza JM and Munoz A (2006). Support vector machines with applications, Statistical Science, 21, 322-336. https://doi.org/10.1214/088342306000000493
- Mukherjee S and Vapnik V (1999). Support vector method for multivariate density estimation, In, Proceedings in Neural Information Processing Systems, 659-665.
- Pensky M and Vidakovic B (1999). Adaptive wavelet estimator for nonparametric density deconvolutoin, Annals of Statistics, 27, 2033-2053. https://doi.org/10.1214/aos/1017939249
- Phillips DL (1962). A technique for the numerical solution of integral equations of the first kind, Journal of the Association for Computing Machinery, 9, 84-97. https://doi.org/10.1145/321105.321114
- Rasmussen CE and Williams CKI (2006). Gaussian Processes for Machine Learning, MIT Press, Cambridge, MA.
- Scholkopf B, Herbrich R, and Smola AJ (2001). A generalized representer theorem, Computational Learning Theory, Lecture Notes in Computer Science, 2111, 416-426.
- Scholkopf B and Smola AJ (2002). Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, MIT Press, Cambridge, MA.
- Smola AJ and Scholkopf B (2003). A tutorial on support vector regression, Statistics and Computing, 14, 199-222.
- Stefanski L and Carroll RJ (1990). Deconvoluting kernel density estimators, Statistics, 21, 169-184. https://doi.org/10.1080/02331889008802238
- Tikhonov AN and Arsenin VY (1977). Solution of Ill-posed Problems, W. H. Winston, Washington.
- Vapnik V (1995). The Nature of Statistical Learning Theory, Springer Verlag, New York.
- Vapnik V and Chervonenkis A (1964). A note on one class of perceptrons, Automation and Remote Control, 25, 103-109.
- Vapnik V and Lerner L (1963). Pattern recognition using generalized portrait method, Automation and Remote Control, 24, 774-780.
- Vert R and Vert J (2006). Consistency and convergence rates of one-class SVMs and related algo-rithms, Journal of Machine Learning Research, 7, 817-854.
- Wahba G (1990). Spline Models for Observational Data, CBMS-NSF Regional Conference Series in Applied Mathematics, 59, SIAM, Philadelphia.
- Wahba G (2006). Comments to support vector machines with applications by J.M. Moguerza and A. Munoz, Statistical Sciences, 21, 347-351. https://doi.org/10.1214/088342306000000457
- Wang X andWang B (2011). Deconvolution estimation in measurement error models: The R package decon, Journal of Statistical Software, 39, i10.
- Weston J, Gammerman A, Stitson M, Vapnik V, Vovk V, andWatkins C (1999). Support vector density estimation. In Scholkopf, B. and Smola, A., editors, Advances in Kernel Methods-Support Vector Learning, 293-306, MIT Press, Cambridge, MA.
- Zhang HP (1992). On deconvolution using time of flight information in positron emission tomography, Statistica Sinica, 2, 553-575.