References
- Achard S, Raymond S, Whitcher B, Suckling J, and Bullmore E (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs, Journal of Neuroscience, 26, 63-72. https://doi.org/10.1523/JNEUROSCI.3874-05.2006
- Brown LD and Levine M (2007). Variance estimation in nonparametric regression via the difference sequence method, Annals of Statistics, 35, 2219-2232. https://doi.org/10.1214/009053607000000145
- Buckley MJ, Eagleson GK, and Silverman BW (1988). The estimation of residual variance in non-parametric regression, Biometrika, 75, 189-199. https://doi.org/10.1093/biomet/75.2.189
- Chaudhuri A (1992). A note on estimating the variance of the regression estimator, Biometrika, 79, 217-218. https://doi.org/10.1093/biomet/79.1.217
- Dette H, Munk A, andWagner T (1998). Estimating the variance in nonparametric regression-what is a reasonable choice?, Journal of Royal Statistical Society B, 60, 751-764. https://doi.org/10.1111/1467-9868.00152
- Eddington, A. S. and Plakidis, S. (1929). Irregularities of period of long-period variable stars, Monthly Notices of the Royal Astronomical Society, 90, 65-71. https://doi.org/10.1093/mnras/90.1.65
- Gasser T, Sroka L, and Jennen-Steinmetz C (1986). Residual variance and residual pattern in nonlinear regression, Biometrika, 73, 625-633. https://doi.org/10.1093/biomet/73.3.625
- Hall P, Kay JW, and Titterington DM (1990). On variance estimation in nonparametric regression, Biometrika, 77, 515-419. https://doi.org/10.1093/biomet/77.3.515
- Hastie T and Tibshirani R (1990). Generalized Additive Models, Chapman and Hall, London.
- Kim J and Hart J (2011). A change-point estimator using local Fourier series, Journal of Nonpara-metric Statistics, 23, 83-98. https://doi.org/10.1080/10485251003721232
- Kott PS (1990). Estimating the conditional variance of a design consistent regression estimator, Journal of Statistical Planning and Inference, 24, 287-296. https://doi.org/10.1016/0378-3758(90)90049-Z
- Lindquist MA, Waugh C, and Wager TD (2007). Modeling state-related fMRI activity using change-point theory, NeuroImage, 35, 1125-1141. https://doi.org/10.1016/j.neuroimage.2007.01.004
- Lindquist MA, Xu Y, Nebel MB, and Caffo BS (2014). Evaluating dynamic bivariate correlations in resting-state fMRI: A comparison study and a new approach, NeuroImage, 101, 531-546. https://doi.org/10.1016/j.neuroimage.2014.06.052
- Logothetis NK, Pauls J, Augath M, Trinath T, and Oeltermann A (2001). Neurophysiological investi-gation of the basis of the fMRI signal, Nature, 412, 150-157. https://doi.org/10.1038/35084005
- Muller UU, Schick A, and Wefelmeyer W (2003). Estimating the error variance in nonparametric regression by a covariate-matched U-statistic, Statistics, 37, 179-188. https://doi.org/10.1080/0233188031000078051
- Ogden RT and Collier GL (2002). Inference on variance components of autocorrelated sequences in the presence of drift, Journal of Nonparametric Statistics, 14, 409-420. https://doi.org/10.1080/10485250213111
- Reinsch C (1967). Smoothing by spline functions, Numerical Mathematics, 24, 375-382.
- Rice JA (1984). Bandwidth choice for nonparametric regression, Annals of Statistics, 12, 1215-1230. https://doi.org/10.1214/aos/1176346788
- Sarndal CE, Swensson B, and Wretman JH (1989). The weighted residual technique for estimating the variance of the general regression estimator, Biometrika, 76, 527-537. https://doi.org/10.1093/biomet/76.3.527
- Tong T and Wang Y (2005). Estimating residual variance in nonparametric regression using least squares, Biometrika, 92, 821-830. https://doi.org/10.1093/biomet/92.4.821
- Wahba G (1990). Spline models for observational data, CBMS-NSF Regional Conference Series in Applied Mathematics, 59, PA:SIAM.