DOI QR코드

DOI QR Code

REFINED ARITHMETIC-GEOMETRIC MEAN INEQUALITY AND NEW ENTROPY UPPER BOUND

  • Received : 2015.05.01
  • Published : 2016.01.31

Abstract

In this paper, we establish a new refinement of the arithmetic-geometric mean inequality. Applying this result in information theory, we obtain a more precise upper bound for Shannon's entropy.

Keywords

References

  1. S. S. Dragomir and C. J. Goh, A counterpart of Jensen's discrete inequality for differentiable convex mappings and applications in information theory, Math. Comput. Modelling 24 (1996), no. 2, 1-11. https://doi.org/10.1016/0895-7177(96)00085-4
  2. S. S. Dragomir and C. J. Goh, Some bounds on entropy measures in information theory, Appl. Math. Lett. 10 (1997), no. 3, 23-28. https://doi.org/10.1016/S0893-9659(97)00028-1
  3. P. R. Mercer, Refined arithmetic, geometric and harmonic mean inequalities, Rocky Mountain J. Math. 33 (2003), no. 4, 1459-1464. https://doi.org/10.1216/rmjm/1181075474
  4. O. Parkash and P. Kakkar, Entropy bounds using arithmetic-geometric-harmonic mean inequality, Int. J. Pure Appl. Math. 89 (2013), no. 5, 719-730.
  5. S. Simic, Best possible global bounds for Jensen's inequality, Appl. Math. Comput. 215 (2009), no. 6, 2224-2228. https://doi.org/10.1016/j.amc.2009.08.062
  6. S. Simic, Jensen's inequality and new entropy bounds, Appl. Math. Lett. 22 (2009), no. 8, 1262-1265. https://doi.org/10.1016/j.aml.2009.01.040
  7. N. Tapus and P. G. Popescu, A new entropy upper bound, Appl. Math. Lett. 25 (2012), no. 11, 1887-1890. https://doi.org/10.1016/j.aml.2012.02.056
  8. J. Tian, New property of a generalized Holder's inequality and its applications, Inform. Sci. 288 (2014), 45-54. https://doi.org/10.1016/j.ins.2014.07.053