DOI QR코드

DOI QR Code

A NOTE ON THE MODIFIED k-FIBONACCI-LIKE SEQUENCE

  • Received : 2015.02.04
  • Published : 2016.01.31

Abstract

The Fibonacci sequence is a sequence of numbers that has been studied for hundreds of years. In this paper, we introduce the modified k-Fibonacci-like sequence and prove Binet's formula for this sequence and then use it to introduce and prove the Catalan, Cassini, and d'Ocagne identities for the modified k-Fibonacci-like sequence. Also, the ordinary generating function of this sequence is stated.

Keywords

References

  1. V. H. Badshah, M. S. Teeth, and M. M. Dar, Generalized Fibonacci-like sequence and its properties, Int. J. Contemp. Math. Sci. 7 (2012), no. 21-24, 1155-1164.
  2. P. Catarino, On some identities for k-Fibonacci sequence, Int. J. Contemp. Math. Sci. 9 (2014), no. 1, 37-42. https://doi.org/10.12988/ijcms.2014.311120
  3. M. Edson, S. Lewis, and O. Yayenie, The k-periodic Fibonacci sequence and an extended Binet's formula, Integers 11 (2011), A32, 12 pp.
  4. M. Edson and O. Yayenie, A new generalization of Fibonacci sequences and extended Binet's formula, Integers 9 (2009), A48, 639-654.
  5. S. Falcon, On the k-Lucas Numbers, Int. J. Contemp. Math. Sci. 6 (2011), no. 21, 1039-1050.
  6. S. Falcon and A. Plaza, The k-Fibonacci sequence and the Pascal 2-triangle, Chaos Solitons Fractals 33 (2007), no. 1, 38-49. https://doi.org/10.1016/j.chaos.2006.10.022
  7. S. Harne, B. Singh, and S. Pal, Generalized Fibonacci-like sequence and Fibonacci sequence, Int. J. Contemp. Math. Sci. 9 (2014), no. 5, 235-241. https://doi.org/10.12988/ijcms.2014.4218
  8. V. E. Hoggat, Fibonacci and Lucas numbers, Palo Alto, CA: Houghton; 1969.
  9. Y. K. Panwar, G. P. S. Rathore, and R. Chawla, On the k-Fibonacci-like numbers, Turkish J. Anal. Number Theory 2 (2014), no. 1, 9-12.
  10. Y. K. Panwar, B. Singh, and V. K. Gupta, Generalized Fibonacci sequence and its properties, Palest. J. Math. 3 (2014), no. 1, 141-147.
  11. B. Singh, O. Sikhwal, and S. Bhatnagar, Fibonacci-like sequence and its properties, Int. J. Contemp. Math. Sci. 5 (2010), no. 17-18, 859-868.
  12. O. Yayenie, A note on generalized Fibonacci sequences, Appl. Math. Comput. 217 (2011), no. 12, 5603-5611. https://doi.org/10.1016/j.amc.2010.12.038