DOI QR코드

DOI QR Code

Microwave Sol-Gel Derived NaLa(MoO4)2 Yellow Phosphors Doped with Ho3+/Yb3+ and Upconversion Photoluminescence

  • Lim, Chang Sung (Department of Advanced Materials Science & Engineering, Hanseo University)
  • Received : 2015.09.10
  • Accepted : 2015.12.16
  • Published : 2016.01.27

Abstract

$NaLa_{1-x}{(MoO_4)}_2$:$Ho^{3+}/Yb^{3+}$ phosphors with the correct doping concentrations of $Ho^{3+}$ and $Yb^{3+}$ ($x=Ho^{3+}+Yb^{3+}$, $Ho^{3+}=0.05$ and $Yb^{3+}=0.35$, 0.40, 0.45 and 0.50) were successfully synthesized by the microwave-modified sol-gel method. Well-crystallized particles formed after heat-treatment at $900^{\circ}C$ for 16 h showed a fine and homogeneous morphology with particle sizes of $3-5{\mu}m$. The optical properties were examined using photoluminescence emission and Raman spectroscopy. Under excitation at 980 nm, the UC intensities of the doped samples exhibited strong yellow emissions based on the combination of strong emission bands at 545-nm and 655-nm emission bands in green and red spectral regions, respectively. The strong 545-nm emission band in the green region corresponds to the $^5S_2/^5F_4{\rightarrow}^5I_8$ transition in $Ho^{3+}$ ions, while the strong emission 655-nm band in the red region appears due to the $^5F_5{\rightarrow}^5I_8$ transition in $Ho^{3+}$ ions. Pump power dependence and Commission Internationale de L'Eclairage chromaticity of the upconversion emission intensity were evaluated in detail.

Keywords

References

  1. M. Wang, G. Abbineni, A. Clevenger, C. Mao and S. Xu, Nanomed.: Nanotech. Biol. Med., 7, 710 (2011). https://doi.org/10.1016/j.nano.2011.02.013
  2. Y. J. Chen, H. M. Zhu, Y. F. Lin, X. H. Gong, Z. D. Luo and Y. D. Huang, Opt. Mater., 35, 1422 (2013). https://doi.org/10.1016/j.optmat.2013.02.012
  3. M. Lin, Y. Zho, S. Wang, M, Liu, Z. Duan, Y. Chen, F. Li, F. Xu and T. Lu, Biol. Adv., 30, 1551 (2012).
  4. L. Li, W. Zi, H. Yu, S. Gan, G. Ji, H. Zou and X. Xu, J. Lumin., 143, 14 (2013). https://doi.org/10.1016/j.jlumin.2013.04.031
  5. C. Ming, F. Song and L. Yan, Opt. Commun., 286, 217 (2013). https://doi.org/10.1016/j.optcom.2012.08.095
  6. N. Xue, X. Fan, Z. Wang and M. Wang, J. Phys. Chem. Sol., 69, 1891 (2008). https://doi.org/10.1016/j.jpcs.2008.01.015
  7. Z. Shan, D. Chen, Y. Yu, P. Huang, F. Weng, H. Lin and Y. Wang, Mater. Res. Bull., 45, 1017 (2010). https://doi.org/10.1016/j.materresbull.2010.04.004
  8. W. Liu, J. Sun, X. Li, J. Zhang, Y. Tian, S. Fu, H. Zhong, T. Liu, L. Cheng, H. Xia, B. Dong, R. Hua, X. Zhang and B. Chen, Opt. Mater., 35, 1487 (2013). https://doi.org/10.1016/j.optmat.2013.03.008
  9. W. Xu, H. Zhao, Y. Li, L. Zheng, Z. Zhang and W. Cao, Sens. Act. B: Chem. 188, 1096 (2013). https://doi.org/10.1016/j.snb.2013.07.094
  10. J. Tang, C. Cheng, Y. Chen and Y. Huang, J. Alloys Compd., 629, 268 (2014).
  11. W. Zhang, J. Li, Y. Wang, J. Long and K. Qiu, J. Alloys Compd., 635, 16 (2015). https://doi.org/10.1016/j.jallcom.2015.02.106
  12. F. Mo, L. Zhou, Q. pang, F. Gong and Z. Liang, Cer. Inter., 38, 6289 (2012). https://doi.org/10.1016/j.ceramint.2012.04.084
  13. G. Li, S. Lan, L. Li, M. Li, W. Bao, H. Zou, X. Xu and S. Gan, J. Alloys Compd., 513, 145 (2012). https://doi.org/10.1016/j.jallcom.2011.10.008
  14. J. Liao, H. Huang, H. You, X. Qiu, Y. Li, B. Qui and HR Wen, Mater. Res. Bull., 45, 1145 (2010). https://doi.org/10.1016/j.materresbull.2010.05.027
  15. F. Cao, L. Li, Y. Tian and X. Wu, Optics Laser Tech., 55, 6 (2014). https://doi.org/10.1016/j.optlastec.2013.06.016
  16. G. M. Kuz'micheva, D. A. Lis, K. A. Subbotin, V. B. Rybakov and E. V. Zharikov, J. Crys. Growth, 275, e1835 (2005). https://doi.org/10.1016/j.jcrysgro.2004.11.257
  17. X. Lu, Z. You, J. Li, Z. Zhu, G. Jia, B. Wu and C. Tu, J. Alloys Compd. 458, 462 (2008). https://doi.org/10.1016/j.jallcom.2007.04.010
  18. X. Li, Z. Lin, L. Zhang and G. wang, J. Crys. Growth, 290, 670 (2006). https://doi.org/10.1016/j.jcrysgro.2006.02.005
  19. Y. K. Voron'ko, K. A. Subbotin, V. E. Shukshin, D. A. Lis, S. N. Ushakov, A. V. Popov and E. V. Zharikov, Opt. Mater., 29, 246 (2009).
  20. H. Lin, X. Yan and X. Wang, J. Sol. State. Chem., 204, 266 (2013). https://doi.org/10.1016/j.jssc.2013.06.020
  21. G. Li, L. Li, M. Li, W. Bao, Y. Song, S. Gan, H. Zou and X. Xu, J. Alloys Compd., 550, 1 (2013). https://doi.org/10.1016/j.jallcom.2012.09.125
  22. Y. Huang, L. Zhou, L. Yang and Z. Tang, Opt. Mater., 33, 777 (2011). https://doi.org/10.1016/j.optmat.2010.12.015
  23. L. Li, W. Zi, G. Li, S. Lan, G. Ji, S. Gan, H. Zou and X. Xu, J. Sol. State Chem., 191, 175 (2012). https://doi.org/10.1016/j.jssc.2012.03.003
  24. Y. Tian, B. Chen, B. Tian, J. Sun, X. Li, J. Zhang, L. Cheng, H. Zhong, H. Zhong, Q. Meng and R. Hua, Physica B., 407, 2556 (2012). https://doi.org/10.1016/j.physb.2012.03.066
  25. J. Zhang, X. Wang, X. Zhang, X. Zhao, X. Liu and L. Peng, Inorg. Chem. Commun., 14, 1723 (2011). https://doi.org/10.1016/j.inoche.2011.07.015
  26. S. W. Park, B. K. Moon, B. C. Choi, J. H. Jeong, J. S. Bae and K. H. Kim, Curr. Appl. Phys., 12, S150 (2012). https://doi.org/10.1016/j.cap.2012.02.048
  27. C. S. Lim, Mater. Res. Bull., 47, 4220 (2012). https://doi.org/10.1016/j.materresbull.2012.09.029
  28. R. D. Shanan, Acta Cryst.A, 32, 751 (1976). https://doi.org/10.1107/S0567739476001551
  29. H. Guo, N. Dong, M. Yin, W. Zhang, L. Lou and S. Xia, J. Phys. Chem. B, 108, 19205 (2004). https://doi.org/10.1021/jp048072q
  30. H. Du, Y. Lan, Z. Xia and J. Sun, Mater. Res. Bull., 44, 1660 (2009). https://doi.org/10.1016/j.materresbull.2009.04.009
  31. C. S. Lim, A. Aleksandrovsky, M. Molokeev, A. Oreshonkov and V. Atuchin, Phys. Chem. Chem. Phys., 17, 19278 (2015). https://doi.org/10.1039/C5CP03054D