References
- Adimora, N.J., Jones, D.P., and Kemp, M.L. (2010). A model of redox kinetics implicates the thiol proteome in cellular hydrogen peroxide responses. Antioxid. Redox Signal. 13, 731-743. https://doi.org/10.1089/ars.2009.2968
- Bailey, T.L., and Gribskov, M. (1998a). Combining evidence using pvalues:application to sequence homology searches. Bioinformatics 14, 48-54. https://doi.org/10.1093/bioinformatics/14.1.48
- Bailey, T.L., and Gribskov, M. (1998b). Methods and statistics for combining motif match scores. J. Comput. Biol. 5, 211-221. https://doi.org/10.1089/cmb.1998.5.211
- Barranco-Medina, S., Kakorin, S., Lazaro, J.J., and Dietz, K.J. (2008). Thermodynamics of the dimer-decamer transition of reduced human and plant 2-cys peroxiredoxin. Biochemistry 47, 7196-7204. https://doi.org/10.1021/bi8002956
- Cammer, S.A., Hoffman, B.T., Speir, J.A., Canady, M.A., Nelson, M.R., Knutson, S., Gallina, M., Baxter, S.M., and Fetrow, J.S. (2003). Structure-based active site profiles for genome analysis and functional family subclassification. J. Mol. Biol. 334, 387-401. https://doi.org/10.1016/j.jmb.2003.09.062
- Chae, H.Z., Robison, K., Poole, L.B., Church, G., Storz, G., and Rhee, S.G. (1994a). Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc. Natl. Acad. Sci. USA 91, 7017-7021. https://doi.org/10.1073/pnas.91.15.7017
- Chae, H.Z., Uhm, T.B., and Rhee, S.G. (1994b). Dimerization of thiol-specific antioxidant and the essential role of cysteine 47. Proc. Natl. Acad. Sci. USA 91, 7022-7026. https://doi.org/10.1073/pnas.91.15.7022
- Copley, S.D., Novak, W.R., and Babbitt, P.C. (2004). Divergence of function in the thioredoxin fold suprafamily: evidence for evolution of peroxiredoxins from a thioredoxin-like ancestor. Biochemistry 43, 13981-13995. https://doi.org/10.1021/bi048947r
- Dietz, K.J. (2011). Peroxiredoxins in plants and cyanobacteria. Antioxid. Redox Signal. 15, 1129-1159. https://doi.org/10.1089/ars.2010.3657
- Dip, P.V., Kamariah, N., Nartey, W., Beushausen, C., Kostyuchenko, V.A., Ng, T.S., Lok, S.M., Saw, W.G., Eisenhaber, F., Eisenhaber, B., et al. (2014). Key roles of the Escherichia coli AhpC Cterminus in assembly and catalysis of alkylhydroperoxide reductase, an enzyme essential for the alleviation of oxidative stress. Biochim. Biophys. Acta 1837, 1932-1943. https://doi.org/10.1016/j.bbabio.2014.08.007
- Ellis, H.R., and Poole, L.B. (1997). Roles for the two cysteine residues of AhpC in catalysis of peroxide reduction by alkyl hydroperoxide reductase from Salmonella typhimurium. Biochemistry 36, 13349-13356. https://doi.org/10.1021/bi9713658
- Ferrer-Sueta, G., Manta, B., Botti, H., Radi, R., Trujillo, M., and Denicola, A. (2011). Factors affecting protein thiol reactivity and specificity in peroxide reduction. Chem. Res. Toxicol. 24, 434-450. https://doi.org/10.1021/tx100413v
- Flohe, L. (2010). Changing paradigms in thiology from antioxidant defense toward redox regulation. Methods Enzymol. 473, 1-39. https://doi.org/10.1016/S0076-6879(10)73001-9
- Hall, A., Parsonage, D., Poole, L.B., and Karplus, P.A. (2010). Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization. J. Mol. Biol. 402, 194-209. https://doi.org/10.1016/j.jmb.2010.07.022
- Hall, A., Nelson, K., Poole, L.B., and Karplus, P.A. (2011). Structurebased insights into the catalytic power and conformational dexterity of peroxiredoxins. Antioxid. Redox Signal. 15, 795-815. https://doi.org/10.1089/ars.2010.3624
- Jönsson, T.J., Johnson, L.C., and Lowther, W.T. (2008). Structure of the sulphiredoxin-peroxiredoxin complex reveals an essential repair embrace. Nature 451, 98-101. https://doi.org/10.1038/nature06415
- Knoops, B., Loumaye, E., and Van der Eecken, V. (2007). Evolution of the peroxiredoxins: taxonomy, homology and characterization. In peroxiredoxin systems, L. Flohe, and J.R. Harris, eds. (New York, Springer), pp. 27-40.
- Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
- Leuthaeuser, J.B., Knutson, S.T., Kumar, K., Babbitt, P.C., and Fetrow, J.S. (2015). Comparison of topological clustering within protein networks using edge metrics that evaluate full sequence, full structure, and active site microenvironment similarity. Protein Sci. 24, 1423-1439. https://doi.org/10.1002/pro.2724
- Nelson, K.J., Knutson, S.T., Soito, L., Klomsiri, C., Poole, L.B., and Fetrow, J.S. (2011). Analysis of the peroxiredoxin family: Using active-site structure and sequence information for global classification and residue analysis. Proteins 79, 947-964. https://doi.org/10.1002/prot.22936
- Parsonage, D., Youngblood, D.S., Sarma, G.N., Wood, Z.A., Karplus, P.A., and Poole, L.B. (2005). Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin. Biochemistry 44, 10583-10592. https://doi.org/10.1021/bi050448i
- Perkins, A., Nelson, K.J., Parsonage, D., Poole, L.B., and Karplus, P.A. (2015). Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem. Sci. 40, 435-445. https://doi.org/10.1016/j.tibs.2015.05.001
- Poole, L.B. (2015). The basics of thiols and cysteines in redox biology and chemistry. Free Radic. Biol. Med. 80, 148-157. https://doi.org/10.1016/j.freeradbiomed.2014.11.013
- Schnoes, A.M., Brown, S.D., Dodevski, I., and Babbitt, P.C. (2009). Annotation error in public databases: misannotation of molecular function in enzyme superfamilies. PLoS Comput. Biol. 5, e1000605. https://doi.org/10.1371/journal.pcbi.1000605
- Soito, L., Williamson, C., Knutson, S.T., Fetrow, J.S., Poole, L.B., and Nelson, K.J. (2011). PREX: PeroxiRedoxin classification indEX, a database of subfamily assignments across the diverse peroxiredoxin family. Nucleic Acids Res. 39, D332-337. https://doi.org/10.1093/nar/gkq1060
- Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
- Winterbourn, C.C. (2008). Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 4, 278-286. https://doi.org/10.1038/nchembio.85
- Wood, Z.A., Poole, L.B., Hantgan, R.R., and Karplus, P.A. (2002). Dimers to doughnuts: redox-sensitive oligomerization of 2-cysteine peroxiredoxins. Biochemistry 41, 5493-5504. https://doi.org/10.1021/bi012173m
Cited by
- Overview on Peroxiredoxin vol.39, pp.1, 2016, https://doi.org/10.14348/molcells.2016.2368
- An Atlas of Peroxiredoxins Created Using an Active Site Profile-Based Approach to Functionally Relevant Clustering of Proteins vol.13, pp.2, 2017, https://doi.org/10.1371/journal.pcbi.1005284
- LokiarchaeotaMarks the Transition between the Archaeal and Eukaryotic Selenocysteine Encoding Systems vol.33, pp.9, 2016, https://doi.org/10.1093/molbev/msw122
- The active site architecture in peroxiredoxins: a case study on Mycobacterium tuberculosis AhpE vol.52, pp.67, 2016, https://doi.org/10.1039/C6CC02645A
- Evolution and function of the Mycoplasma hyopneumoniae peroxiredoxin, a 2-Cys-like enzyme with a single Cys residue vol.292, pp.2, 2017, https://doi.org/10.1007/s00438-016-1272-2
- Peroxiredoxin 6 in the repair of peroxidized cell membranes and cell signaling vol.617, 2017, https://doi.org/10.1016/j.abb.2016.12.003
- The Architecture of Thiol Antioxidant Systems among Invertebrate Parasites vol.22, pp.2, 2017, https://doi.org/10.3390/molecules22020259
- Crystal structures of human peroxiredoxin 6 in different oxidation states vol.477, pp.4, 2016, https://doi.org/10.1016/j.bbrc.2016.06.125
- Hyperoxidation of Peroxiredoxins: Gain or Loss of Function? 2018, https://doi.org/10.1089/ars.2017.7214
- Experimentally Dissecting the Origins of Peroxiredoxin Catalysis 2017, https://doi.org/10.1089/ars.2016.6922
- Alteration of molecular assembly of peroxiredoxins from hyperthermophilic archaea 2017, https://doi.org/10.1093/jb/mvx045
- Cellular Timekeeping: It’s Redox o’Clock vol.10, pp.5, 2017, https://doi.org/10.1101/cshperspect.a027698
- Distinct molecular assembly of homologous peroxiredoxins from Pyrococcus horikoshii and Thermococcus kodakaraensis vol.166, pp.1, 2019, https://doi.org/10.1093/jb/mvz013
- Interplay Between Mitochondrial Peroxiredoxins and ROS in Cancer Development and Progression vol.20, pp.18, 2016, https://doi.org/10.3390/ijms20184407
- Catalysis of Peroxide Reduction by Fast Reacting Protein Thiols : Focus Review vol.119, pp.19, 2016, https://doi.org/10.1021/acs.chemrev.9b00371
- The Enigma of 2-Cys Peroxiredoxins: What Are Their Roles? vol.86, pp.1, 2021, https://doi.org/10.1134/s0006297921010089
- Molecular Characterization of Prdx Family and Response of Antioxidant Enzymes in Berberine Hydrochloride-Treated Charybdis japonica Infected With Aeromonas hydrophila vol.8, pp.None, 2016, https://doi.org/10.3389/fmars.2021.784205
- Relevance of peroxiredoxins in pathogenic microorganisms vol.105, pp.14, 2016, https://doi.org/10.1007/s00253-021-11360-5
- Typical 2-Cys Peroxiredoxins as a Defense Mechanism against Metal-Induced Oxidative Stress in the Solitary Ascidian Ciona robusta vol.11, pp.1, 2016, https://doi.org/10.3390/antiox11010093