DOI QR코드

DOI QR Code

Topological optimization procedure considering nonlinear material behavior for reinforced concrete designs

  • Franca, Marcela Bruna Braga (PROPEEs-Programa de Pos-Graduacao em Engenharia de Estruturas da UFMG, Departamento de Engenharia de Estruturas, Universidade Federal de Minas Gerais) ;
  • Greco, Marcelo (PROPEEs-Programa de Pos-Graduacao em Engenharia de Estruturas da UFMG, Departamento de Engenharia de Estruturas, Universidade Federal de Minas Gerais) ;
  • Lanes, Ricardo Morais (PROPEEs-Programa de Pos-Graduacao em Engenharia de Estruturas da UFMG, Departamento de Engenharia de Estruturas, Universidade Federal de Minas Gerais) ;
  • Almeida, Valerio Silva (EPUSP, Departamento de Engenharia de Estruturas e Fundacao da Escola Politecnica, Universidade de Sao Paulo)
  • Received : 2014.12.23
  • Accepted : 2016.01.20
  • Published : 2016.01.25

Abstract

The search for new structural systems capable of associating performance and safety requires deeper knowledge regarding the mechanical behavior of structures subject to different loading conditions. The Strut-and-Tie Model is commonly used to structurally designing some reinforced concrete elements and for the regions where geometrical modifications and stress concentrations are observed, called "regions D". This method allows a better structural behavior representation for strength mechanisms in the concrete structures. Nonetheless, the topological model choice depends on the designer's experience regarding compatibility between internal flux of loads, geometry and boundary/initial conditions. Thus, there is some difficulty in its applications, once the model conception presents some uncertainty. In this context, the present work aims to apply the Strut-and-Tie Model to nonlinear structural elements together with a topological optimization method. The topological optimization method adopted considers the progressive stiffness reduction of finite elements with low stress values. The analyses performed could help the structural designer to better understand structural conceptions, guaranteeing the safety and the reliability in the solution of complex problems involving structural concrete.

Keywords

References

  1. Abaqus (2010), Abaqus analysis user's manual, Version 6.10, Dassault Systemes.
  2. Almeida, V., Simonetti, H.L. and Neto, L.O. (2013a), "Comparative analysis of strut-and-tie models using smooth evolutionary structural optimization", Eng. Struct., 56, 1665-1675. https://doi.org/10.1016/j.engstruct.2013.07.007
  3. Almeida, V.S., Simonetti, H.L. and Neto, L.O. (2013b), "Truss-and-tie model analyses for concrete structures using a numerical tecnique", Revista Ibracon de Estruturas e Materials, 6(1), 139-157. https://doi.org/10.1590/S1983-41952013000100008
  4. ACI 318 (1995), Building Code Requeriments for Structural Concrete, American Concrete Institute, Detroit.
  5. ACI 318(2005), Building Code Requirements for Structural Concrete and Commentary, APPENDIX A: Strut-and-Tie Models, American Concrete Institute, Detroit.
  6. Bendsoe, M.P. and Kikuchi, N. (1988), "Generating optimal topologies in structural design using a homogenization method", Comput. Method. Appl. M., 71(2), 197-224. https://doi.org/10.1016/0045-7825(88)90086-2
  7. CSA Standard-A23.3 (2004), Design of Concrete Structures, Canadian Standards Association Ontario, Rexdale.
  8. Chen, W.F. and Han, D.J. (1988), Plasticity for Structural Engineers, Springer-Verlag, New York, USA.
  9. Chetchotisak, P., Teerawong, J., Yindeesuk, S. and Song, J. (2014), "New Strut-and-Tie-Models for shear strength prediction and design of RC deep beams", Comput. Concrete, 14(5), 807-831.
  10. Cheng, T.K. and Olhoff, N. (1982), "Regularized formulation for optimal design of axisymmetric plates", Int. J. Solid. Struct., 18(2), 153-169. https://doi.org/10.1016/0020-7683(82)90023-3
  11. Eurocode 2 (2002), Design of Concrete Structures, General Rules and Rules for Buildings.
  12. CEB - FIB (2010), Model Code for Concrete Structures, Federation Internationale du Beton, 2.
  13. EHE (2008), Instruccion de Hormigon Estructural, Ministerio de la Presidencia. (in spanish)
  14. Garber, D.B., Gallardo, J.M., Huaco, G.D., Samaras, V.A. and Breen, J.E. (2014), "Experimental evaluation of Strut-and-Tie Model of indeterminate deep beam", ACI Struct. J., 111(4), 873 -873.
  15. Kmiecik, P. and Kaminski, M. (2011), "Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration", Arch. Civil Mech. Eng., 11(3), 623-636. https://doi.org/10.1016/S1644-9665(12)60105-8
  16. Kohn, R.V. and Strang, G. (1986), "Optimal-design and relaxation of variational problems", Commun. Pur Appl. Math., 39(1), 112-137.
  17. Lanes, R.M. and Greco, M. (2013), "Application of a topological evolutionary optimization method developed through Python script", Sci. Eng. J., 22, 1-11. (in Portuguese)
  18. Lee, J. and Fenves, G.L. (1998), "Plastic-damage model for cyclic loading of concrete structures", J. Eng. Mech., 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
  19. Liang, Q.Q., Xie, Y.M. and Steven, G.P. (2000), "Topology optimization of strut-and-tie models in reinforced concrete structures using an evolutionary procedure", ACI Struct. J., 97(2), 322-330.
  20. Liang, Q.Q., Uy, B. and Steven, G.P. (2002), "Performance-based optimization for Strut-Tie Modeling of structural concrete", J. Struct. Eng., 128(6), 815-823. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:6(815)
  21. Lubliner J., Oliver J., Oller, S. and Onate, E. (1989), "A plastic-damage model for concrete", Int. J. Solid. Struct., 25(3), 299-329. https://doi.org/10.1016/0020-7683(89)90050-4
  22. Najafian, H.A. and Vollum, R.L. (2013), "Design of planar reinforced concrete D regions with nonlinear finite element analysis", Eng. Struct., 51, 211-225. https://doi.org/10.1016/j.engstruct.2013.01.022
  23. Olhoff, N., Bendsoe, M.P. and Rasmussen, J. (1991), "On CAD-integrated structural topology and design optimization", Comput. Meth. Appl. M., 89(1), 259-279. https://doi.org/10.1016/0045-7825(91)90044-7
  24. Rozvany, G.I.N., Olhoff, N., Cheng, K. and Taylor, J.E. (1982), "On the solid plate paradox in structural Optimization", J. Struct. Mech., 10(1), 1-32. https://doi.org/10.1080/03601218208907399
  25. Schafer, K. and Schlaich, J. (1991), "Design and detailing of structural concrete using strut-and-tie models", Struct. Eng., 69(6), 113-125.
  26. Schlaich, J, Schafer, K. and Jennewein, M. (1987), "Toward a consistent design of structural concrete", PCI J., 32(3), 74-150. https://doi.org/10.15554/pcij.05011987.74.150
  27. Shah, A., Haq, E. and Khan, S. (2011), "Analysis and design of disturbed regions in concrete structures", Procedia Eng., 14, 3317-3324. https://doi.org/10.1016/j.proeng.2011.07.419
  28. Wight, J.K. and MacGregor, J.G. (2012), Reinforced Concrete Mechanics and Design, Prentice-Hall International, 3rd Edition., London, England.
  29. Xie, Y.M. and Steven, G.P. (1993), "A simple evolutionary procedure for structural optimization", Comput. Struct., 49(5), 885-896. https://doi.org/10.1016/0045-7949(93)90035-C
  30. Zhang, H.Z., Liu, X. and Yi, W.J. (2014), "Reinforcement layout optimization of RC d-regions", Adv. Struct. Eng., 17(7), 979-992. https://doi.org/10.1260/1369-4332.17.7.979

Cited by

  1. Application of the smooth evolutionary structural optimization method combined with a multi-criteria decision procedure vol.143, 2017, https://doi.org/10.1016/j.engstruct.2017.04.001
  2. Automated layout design of multi-span reinforced concrete beams using charged system search algorithm vol.35, pp.3, 2018, https://doi.org/10.1108/EC-05-2017-0188
  3. Strut-and-tie models for linear and nonlinear behavior of concrete based on topological evolutionary structure optimization (ESO) vol.12, pp.1, 2016, https://doi.org/10.1590/s1983-41952019000100008
  4. Minimum cost design of RCMRFs based on consistent approximation method vol.26, pp.1, 2020, https://doi.org/10.12989/cac.2020.26.1.001
  5. New explicit formulas for optimum design of concrete gravity dams vol.27, pp.2, 2016, https://doi.org/10.12989/cac.2021.27.2.143