DOI QR코드

DOI QR Code

Performance Analysis of Landing Point Designation Technique Based on Relative Distance to Hazard for Lunar Lander

달 착륙선의 위험 상대거리 기반 착륙지 선정기법 성능 분석

  • Lee, Choong-Min (Department of Mechanical and Aerospace Engineering/ASRI Seoul National University) ;
  • Park, Young-Bum (Department of Mechanical and Aerospace Engineering/ASRI Seoul National University) ;
  • Park, Chan-Gook (Department of Mechanical and Aerospace Engineering/ASRI Seoul National University)
  • Received : 2015.08.31
  • Accepted : 2015.12.11
  • Published : 2016.01.01

Abstract

Lidar-based hazard avoidance landing system for lunar lander calculates hazard cost with respect to the desired local landing area in order to identify hazard and designate safe landing point where the cost is minimum basically using slope and roughness of the landing area. In this case, if the parameters are only considered, chosen landing target can be designated near hazard threatening the lander. In order to solve this problem and select optimal safe landing point, hazard cost based on relative distance to hazard should not be considered as well as cost based on terrain parameters. In this paper, the effect of hazard cost based on relative distance to hazard on safe landing performance was analyzed and it was confirmed that landing site designation with two relative distances to hazard results in the best safe landing performance by an experiment using three-dimensional depth camera.

달착륙선의 라이다 기반 위험회피 착륙시스템은 기본적으로 목표 착륙지역에 대한 지형 파라미터인 경사와 험준도로 위험도를 계산하고 해당 지역에 대하여 위험도가 최소값을 갖는 점을 안전한 착륙 지점으로 선정한다. 이때, 경사와 험준도만을 고려할 경우 라이다 측정오차에 의해 착륙지가 위험요소 근처로 선정될 수 있으며 이는 착륙선에 위협적이다. 이러한 문제를 해결하고 최대한 안전한 착륙지점을 선정하기 위하여 위험상대거리 기반의 위험도를 기존의 지형파리미터 기반의 위험도와 함께 고려하여야 한다. 본 논문에서는 경사와 험준도 각각에 대한 위험상대거리 기반 위험도가 지형 특성에 따라 착륙지 선정결과에 미치는 영향을 분석하였고, 두 가지 위험상대거리를 동시에 고려하였을 때 가장 좋은 위험회피 착륙 성능을 나타냄을 시뮬레이션과 3차원 뎁스 카메라를 이용한 실험을 통해 확인하였다.

Keywords

References

  1. Epp, Chirold D., and Thomas B. Smith. "Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT)," Aerospace Conference, IEEE, IEEE, 2007.
  2. Shankar, Uday J., et al. "Lunar Terrain Surface Modeling for the ALHAT Program," Aerospace Conference, 2008 IEEE, IEEE, 2008.
  3. Johnson, Andrew E. and James F. Montgomery. "Overview of Terrain Relative Navigation Approaches for Precise Lunar Landing," Aerospace Conference, IEEE, IEEE, 2008.
  4. Johnson, Andrew E., et al. "Lidar-Based Hazard Avoidance for Safe Landing on Mars," Journal of Guidance, Control and Dynamics, Vol. 25, No. 6, 2002, pp. 1091-1099. https://doi.org/10.2514/2.4988
  5. Johnson, Andrew E., et al. "Analysis of On-Board Hazard Detection and Avoidance for Safe Lunar Landing," Aerospace Conference, IEEE, IEEE, 2008
  6. Cohanim, Babak E., and Brian K. Collins. "Landing Point Designation Algorithm for Lunar Landing," Journal of Spacecraft and Rockets, Vol. 46, No.4, 2009, pp.858-864. https://doi.org/10.2514/1.42002
  7. de Lafontaine, Jean, David Neveu, and Karina Lebel. "Autonomous Planetary Landing Using a Lidar Sensor: the Closed-Loop System," AIAA Guidance, Navigation and Control Systems Conference, 2006.
  8. Gribbon, Kim T., and Donald G. Bailey. "A Novel Approach to Real-time Bilinear Interpolation," Field-Programmable Technology, 2004. Proceedings. 2004 IEEE International Conference on. IEEE, 2004.
  9. Lim, Tae W., and Austin J. Toombs. "Pose Estimation Using a Flash Lidar," AIAA Guidance, Navigation and Control Conference, 2014.

Cited by

  1. Development of Collision Prevention System for Agricultural Unmanned Helicopter vol.44, pp.7, 2016, https://doi.org/10.5139/JKSAS.2016.44.7.611