References
- Banerjee, J. (2000), "Free vibration of centrifugally stiffened uniformand tapered beams using the dynamic stiffness method", J. Sound Vib., 233, 857-875. https://doi.org/10.1006/jsvi.1999.2855
- Banerjee, J. (2001), "Dynamic stiffness formulation and free vibration analysis of centrifugally stiffened Timoshenko beams", J. Sound Vib., 247, 97-115. https://doi.org/10.1006/jsvi.2001.3716
- Banerjee, J. and Su, H. (2004), "Development of a dynamic stiffness matrix for free vibration analysis of spinning beams", Comput. Struct., 82, 2189-2197. https://doi.org/10.1016/j.compstruc.2004.03.058
- Banerjee, J., Su, H. and Jackson, D. (2006), "Free vibration of rotating tapered beams using the dynamic stiffness method", J. Sound Vib., 298, 1034-1054. https://doi.org/10.1016/j.jsv.2006.06.040
- Bauer, H. (1980), "Vibration of a rotating uniform beam, part 1: Orientation in the axis of rotation", J. Sound Vib., 72, 177-189. https://doi.org/10.1016/0022-460X(80)90651-3
- Carrera, E. (2002), "Theories and finite elements for multilayered, anisotropic, composite plates and shells", Arch. Comput. Meth. Eng., 9(2), 87-140. https://doi.org/10.1007/BF02736649
- Carrera, E. (2003), "Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking", Arch. Comput. Meth. Eng., 10(3), 215-296. https://doi.org/10.1007/BF02736224
- Carrera, E., Giunta, G. and Petrolo, M. (2011), Beam Structures, Classical and Advanced Theories, Wiley.
- Carrera, E., Cinefra, M., Petrolo, M. and Zappino, E. (2014a), Finite Element analysis of structures through Unified Formulation, Wiley.
- Carrera, E., Filippi, M. and Zappino, E. (2013a), "Analysis of rotor dynamic by one-dimensional variable kinematic theories", J. Eng. Gas Turb. Power, 135, 092501. https://doi.org/10.1115/1.4024381
- Carrera, E., Filippi, M. and Zappino, E. (2013b), "Free vibration analysis of rotating composite blades via carrera unified formulation", Compos. Struct., 106, 317-325. https://doi.org/10.1016/j.compstruct.2013.05.055
- Carrera, E. and Filippi, M. (2014b), "Variable kinematic one-dimensional finite elements for the analysis of rotors made of composite materials", J. Eng. Gas Turb. Power, 136, 092501. https://doi.org/10.1115/1.4027192
- Carrera, E. and Filippi, M. (2015), "Vibration analysis of thin/thick, composites/metallic spinning cylindrical shells by refined beam models", J. Vib. Acoust., ASME, 137(3), 031020. https://doi.org/10.1115/1.4029688
- Chandiramani, N., Librescu, L. and Shete, C. (2002), "On the free-vibration of rotating composite beams using a higher-order shear formulation", Aerosp. Sci. Tech., 6, 545-561. https://doi.org/10.1016/S1270-9638(02)01195-1
- Chandiramani, N., Librescu, L. and Shete, C. (2003), "Vibration of higher-order-shearable pretwisted rotating composite blades", Int. J. Mech. Sci., 45, 2017-2041. https://doi.org/10.1016/j.ijmecsci.2004.02.001
- Chandra, R. and Chopra, I. (1992), "Experimental-theoretical investigation of the vibration characteristics of rotating composite box beams", J. Aircraf., 29, 657-664. https://doi.org/10.2514/3.46216
- Chen, M. and Liao, Y. (1991), "Vibrations of pretwisted spinning beams under axial compressive loads with elastic constraints", J. Sound Vib., 147, 497-513. https://doi.org/10.1016/0022-460X(91)90497-8
- Chen, Y., Zhao, H., Shen, Z., Grieger, I. and Kroplin, B.H. (1993), "Vibrations of high speed rotating shells with calculations for cylindrical shells", J. Sound Vib., 160, 137-160. https://doi.org/10.1006/jsvi.1993.1010
- Combescure, D. and Lazarus, A. (2008), "Refined finite element modelling for the vibration analysis of large rotating machines: application to the gas turbine modular helium reactor power conversion unit", J. Sound Vib., 318(4), 1262-1280. https://doi.org/10.1016/j.jsv.2008.04.025
- Curti, G., Raffa, F. and Vatta, F. (1991), "The dynamic stiffness matrix method in the analysis of rotating systems", Tribol. Tran., 34, 81-85. https://doi.org/10.1080/10402009108982012
- Curti, G., Raffa, F. and Vatta, F. (1992), "An analytical approach to the dynamics of rotating shafts", Meccanica, 27, 285-292. https://doi.org/10.1007/BF00424368
- Genta, G., Chen, F. and Tonoli, A. (2010), "Dynamics behavior of rotating bladed discs: a finite element formulation for the study of second and higher order harmonics", J. Sound Vib., 329, 5289-5306. https://doi.org/10.1016/j.jsv.2010.07.015
- Genta, G. and Tonoli, A. (1996), "A harmonic finite element for the analysis of flexural, torsional and axial rotordynamics behavior of discs", J. Sound Vib., 196, 19-43. https://doi.org/10.1006/jsvi.1996.0465
- Guo, D., Chu, F. and Zheng, Z. (2001), "The influence of rotation on vibration of a thick cylindrical shell", J. Sound Vib., 242, 487-505. https://doi.org/10.1006/jsvi.2000.3356
- Guo, D., Zheng, Z. and Chu, F. (2002), "Vibration analysis of spinning cylindrical shells by finite element method", Int. J. Solid. Struct., 39, 725-739. https://doi.org/10.1016/S0020-7683(01)00031-2
- Hodges, D. and Rutkowski, M. (1981), "Free-vibration analysis of rotating beams by a variable-order finiteelement method", AIAA J., 19, 1459-1466. https://doi.org/10.2514/3.60082
- Jang, G.H., Lee, S.H. and Jung, M.S. (2002), "Free vibration analysis of a spinning flexible disk-spindle system supported by ball bearing and flexible shaft using the finite element method and substructure synthesis", J. Sound Vib., 251, 59-78. https://doi.org/10.1006/jsvi.2001.3984
- Jung, S.N., Nagaraj, V. and Chopra, I. (1999), "Assessment of composite rotor blade modeling techniques", J. Am. Helicop. Soc., 44, 188-205. https://doi.org/10.4050/JAHS.44.188
- Jung, S.N., Nagaraj, V. and Chopra, I. (2001), "Refined structural dynamics model for composite rotor blades", AIAA J., 39, 339-348 https://doi.org/10.2514/2.1310
- Lam, K.Y. and Loy, C.T. (1995), "Free vibrations of a rotating multilayered cylindrical shell", Int. J. Solid. Struct., 32, 647-663. https://doi.org/10.1016/0020-7683(94)00143-K
- Mei, C. (2008), "Application of differential transformation technique to free vibration analysis of a centrifugally stiffened beam", Comput. Struct., 86, 1280-1284. https://doi.org/10.1016/j.compstruc.2007.10.003
- Na, S., Yoon, H. and Librescu, L. (2006), "Effect of taper ratio on vibration and stability of a composite thin-walled spinning shaft", Thin Wall. Struct., 44, 362-371. https://doi.org/10.1016/j.tws.2006.02.007
- Ozge, O.O. and Kaya, M.O. (2006), "Flapwise bending vibration analysis of double tapered rotating Euler- Bernoulli beam by using the differential transform method", Meccanica, 41, 661-670. https://doi.org/10.1007/s11012-006-9012-z
- Ramezani, S. and Ahmadian, M. (2009), "Free vibration analysis of rotating laminated cylindrical shells under different boundary conditions using a combination of the layer-wise theory and wave propagation approach", Tran. B: Mech. Eng., 16, 168-176.
- Rao, S. and Gupta, R. (2001), "Finite element vibration analysis of rotating Timoshenko beams", J. Sound Vib., 242, 103-124. https://doi.org/10.1006/jsvi.2000.3362
- Saito, T. and Endo, M. (1985), "Vibration of finite length rotating cylindrical shells", J. Sound Vib., 107, 17-28.
- Song, O. and Librescu, L. (1997a), "Anisotropy and structural coupling on vibration and instability of spinning thin-walled beams", J. Sound Vib., 204, 477-494. https://doi.org/10.1006/jsvi.1996.0947
- Song, O. and Librescu, L. (1997b), "Structural modeling and free vibration analysis of rotating composite thin-walled beams", J. Am. Helicop. Soc., 42, 358-369. https://doi.org/10.4050/JAHS.42.358
- Song, O., Librescu, L. and Jeong, N.H. (2000), "Vibration and stability of prestwisted spinning thin-walled composite beams featuring bending-bending elastic coupling", J. Sound Vib., 237, 513-533. https://doi.org/10.1006/jsvi.2000.3100
- Yeo, H., Truong, K.V. and Ormiston, R.A. (2010), "Assessment of 1-D Versus 3-D Methods for Modeling Rotor Blade Structural Dynamics", 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Orlando, April.
- Yoo, H.H., Lee, S.H. and Shin, S.H. (2005), "Flapwise bending vibration analysis of rotating multilayered composite beams", J. Sound Vib., 286, 745-761. https://doi.org/10.1016/j.jsv.2004.10.007
Cited by
- Accurate Nonlinear Dynamics and Mode Aberration of Rotating Blades vol.85, pp.11, 2018, https://doi.org/10.1115/1.4040693
- Analysis of Stokes flows by Carrera unified formulation vol.5, pp.3, 2018, https://doi.org/10.12989/aas.2018.5.3.363
- Three-dimensional vibration analysis of rotating pre-twisted cylindrical isotropic and functionally graded shell panels vol.517, pp.None, 2016, https://doi.org/10.1016/j.jsv.2021.116581
- A unified quasi-three-dimensional solution for vibration analysis of rotating pre-twisted laminated composite shell panels vol.282, pp.None, 2016, https://doi.org/10.1016/j.compstruct.2021.115072