DOI QR코드

DOI QR Code

Capabilities of 1D CUF-based models to analyse metallic/composite rotors

  • Filippi, Matteo (Department of Mechanical and Aerospace Engineering, Politecnico di Torino) ;
  • Carrera, Erasmo (Department of Mechanical and Aerospace Engineering, Politecnico di Torino)
  • Received : 2015.07.16
  • Accepted : 2015.07.30
  • Published : 2016.01.25

Abstract

The Carrera Unified Formulation (CUF) is here extended to perform free-vibrational analyses of rotating structures. CUF is a hierarchical formulation, which enables one to obtain refined structural theories by writing the unknown displacement variables using generic functions of the cross-section coordinates (x, z). In this work, Taylor-like expansions are used. The increase of the theory order leads to three-dimensional solutions while, the classical beam models can be obtained as particular cases of the linear theory. The Finite Element technique is used to solve the weak form of the three-dimensional differential equations of motion in terms of "fundamental nuclei", whose forms do not depend on the adopted approximation. Including both gyroscopic and stiffening contributions, structures rotating about either transversal or longitudinal axis can be considered. In particular, the dynamic characteristics of thin-walled cylinders and composite blades are investigated to predict the frequency variations with the rotational speed. The results reveal that the present one-dimensional approach combines a significant accuracy with a very low computational cost compared with 2D and 3D solutions. The advantages are especially evident when deformable and composite structures are analyzed.

Keywords

References

  1. Banerjee, J. (2000), "Free vibration of centrifugally stiffened uniformand tapered beams using the dynamic stiffness method", J. Sound Vib., 233, 857-875. https://doi.org/10.1006/jsvi.1999.2855
  2. Banerjee, J. (2001), "Dynamic stiffness formulation and free vibration analysis of centrifugally stiffened Timoshenko beams", J. Sound Vib., 247, 97-115. https://doi.org/10.1006/jsvi.2001.3716
  3. Banerjee, J. and Su, H. (2004), "Development of a dynamic stiffness matrix for free vibration analysis of spinning beams", Comput. Struct., 82, 2189-2197. https://doi.org/10.1016/j.compstruc.2004.03.058
  4. Banerjee, J., Su, H. and Jackson, D. (2006), "Free vibration of rotating tapered beams using the dynamic stiffness method", J. Sound Vib., 298, 1034-1054. https://doi.org/10.1016/j.jsv.2006.06.040
  5. Bauer, H. (1980), "Vibration of a rotating uniform beam, part 1: Orientation in the axis of rotation", J. Sound Vib., 72, 177-189. https://doi.org/10.1016/0022-460X(80)90651-3
  6. Carrera, E. (2002), "Theories and finite elements for multilayered, anisotropic, composite plates and shells", Arch. Comput. Meth. Eng., 9(2), 87-140. https://doi.org/10.1007/BF02736649
  7. Carrera, E. (2003), "Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking", Arch. Comput. Meth. Eng., 10(3), 215-296. https://doi.org/10.1007/BF02736224
  8. Carrera, E., Giunta, G. and Petrolo, M. (2011), Beam Structures, Classical and Advanced Theories, Wiley.
  9. Carrera, E., Cinefra, M., Petrolo, M. and Zappino, E. (2014a), Finite Element analysis of structures through Unified Formulation, Wiley.
  10. Carrera, E., Filippi, M. and Zappino, E. (2013a), "Analysis of rotor dynamic by one-dimensional variable kinematic theories", J. Eng. Gas Turb. Power, 135, 092501. https://doi.org/10.1115/1.4024381
  11. Carrera, E., Filippi, M. and Zappino, E. (2013b), "Free vibration analysis of rotating composite blades via carrera unified formulation", Compos. Struct., 106, 317-325. https://doi.org/10.1016/j.compstruct.2013.05.055
  12. Carrera, E. and Filippi, M. (2014b), "Variable kinematic one-dimensional finite elements for the analysis of rotors made of composite materials", J. Eng. Gas Turb. Power, 136, 092501. https://doi.org/10.1115/1.4027192
  13. Carrera, E. and Filippi, M. (2015), "Vibration analysis of thin/thick, composites/metallic spinning cylindrical shells by refined beam models", J. Vib. Acoust., ASME, 137(3), 031020. https://doi.org/10.1115/1.4029688
  14. Chandiramani, N., Librescu, L. and Shete, C. (2002), "On the free-vibration of rotating composite beams using a higher-order shear formulation", Aerosp. Sci. Tech., 6, 545-561. https://doi.org/10.1016/S1270-9638(02)01195-1
  15. Chandiramani, N., Librescu, L. and Shete, C. (2003), "Vibration of higher-order-shearable pretwisted rotating composite blades", Int. J. Mech. Sci., 45, 2017-2041. https://doi.org/10.1016/j.ijmecsci.2004.02.001
  16. Chandra, R. and Chopra, I. (1992), "Experimental-theoretical investigation of the vibration characteristics of rotating composite box beams", J. Aircraf., 29, 657-664. https://doi.org/10.2514/3.46216
  17. Chen, M. and Liao, Y. (1991), "Vibrations of pretwisted spinning beams under axial compressive loads with elastic constraints", J. Sound Vib., 147, 497-513. https://doi.org/10.1016/0022-460X(91)90497-8
  18. Chen, Y., Zhao, H., Shen, Z., Grieger, I. and Kroplin, B.H. (1993), "Vibrations of high speed rotating shells with calculations for cylindrical shells", J. Sound Vib., 160, 137-160. https://doi.org/10.1006/jsvi.1993.1010
  19. Combescure, D. and Lazarus, A. (2008), "Refined finite element modelling for the vibration analysis of large rotating machines: application to the gas turbine modular helium reactor power conversion unit", J. Sound Vib., 318(4), 1262-1280. https://doi.org/10.1016/j.jsv.2008.04.025
  20. Curti, G., Raffa, F. and Vatta, F. (1991), "The dynamic stiffness matrix method in the analysis of rotating systems", Tribol. Tran., 34, 81-85. https://doi.org/10.1080/10402009108982012
  21. Curti, G., Raffa, F. and Vatta, F. (1992), "An analytical approach to the dynamics of rotating shafts", Meccanica, 27, 285-292. https://doi.org/10.1007/BF00424368
  22. Genta, G., Chen, F. and Tonoli, A. (2010), "Dynamics behavior of rotating bladed discs: a finite element formulation for the study of second and higher order harmonics", J. Sound Vib., 329, 5289-5306. https://doi.org/10.1016/j.jsv.2010.07.015
  23. Genta, G. and Tonoli, A. (1996), "A harmonic finite element for the analysis of flexural, torsional and axial rotordynamics behavior of discs", J. Sound Vib., 196, 19-43. https://doi.org/10.1006/jsvi.1996.0465
  24. Guo, D., Chu, F. and Zheng, Z. (2001), "The influence of rotation on vibration of a thick cylindrical shell", J. Sound Vib., 242, 487-505. https://doi.org/10.1006/jsvi.2000.3356
  25. Guo, D., Zheng, Z. and Chu, F. (2002), "Vibration analysis of spinning cylindrical shells by finite element method", Int. J. Solid. Struct., 39, 725-739. https://doi.org/10.1016/S0020-7683(01)00031-2
  26. Hodges, D. and Rutkowski, M. (1981), "Free-vibration analysis of rotating beams by a variable-order finiteelement method", AIAA J., 19, 1459-1466. https://doi.org/10.2514/3.60082
  27. Jang, G.H., Lee, S.H. and Jung, M.S. (2002), "Free vibration analysis of a spinning flexible disk-spindle system supported by ball bearing and flexible shaft using the finite element method and substructure synthesis", J. Sound Vib., 251, 59-78. https://doi.org/10.1006/jsvi.2001.3984
  28. Jung, S.N., Nagaraj, V. and Chopra, I. (1999), "Assessment of composite rotor blade modeling techniques", J. Am. Helicop. Soc., 44, 188-205. https://doi.org/10.4050/JAHS.44.188
  29. Jung, S.N., Nagaraj, V. and Chopra, I. (2001), "Refined structural dynamics model for composite rotor blades", AIAA J., 39, 339-348 https://doi.org/10.2514/2.1310
  30. Lam, K.Y. and Loy, C.T. (1995), "Free vibrations of a rotating multilayered cylindrical shell", Int. J. Solid. Struct., 32, 647-663. https://doi.org/10.1016/0020-7683(94)00143-K
  31. Mei, C. (2008), "Application of differential transformation technique to free vibration analysis of a centrifugally stiffened beam", Comput. Struct., 86, 1280-1284. https://doi.org/10.1016/j.compstruc.2007.10.003
  32. Na, S., Yoon, H. and Librescu, L. (2006), "Effect of taper ratio on vibration and stability of a composite thin-walled spinning shaft", Thin Wall. Struct., 44, 362-371. https://doi.org/10.1016/j.tws.2006.02.007
  33. Ozge, O.O. and Kaya, M.O. (2006), "Flapwise bending vibration analysis of double tapered rotating Euler- Bernoulli beam by using the differential transform method", Meccanica, 41, 661-670. https://doi.org/10.1007/s11012-006-9012-z
  34. Ramezani, S. and Ahmadian, M. (2009), "Free vibration analysis of rotating laminated cylindrical shells under different boundary conditions using a combination of the layer-wise theory and wave propagation approach", Tran. B: Mech. Eng., 16, 168-176.
  35. Rao, S. and Gupta, R. (2001), "Finite element vibration analysis of rotating Timoshenko beams", J. Sound Vib., 242, 103-124. https://doi.org/10.1006/jsvi.2000.3362
  36. Saito, T. and Endo, M. (1985), "Vibration of finite length rotating cylindrical shells", J. Sound Vib., 107, 17-28.
  37. Song, O. and Librescu, L. (1997a), "Anisotropy and structural coupling on vibration and instability of spinning thin-walled beams", J. Sound Vib., 204, 477-494. https://doi.org/10.1006/jsvi.1996.0947
  38. Song, O. and Librescu, L. (1997b), "Structural modeling and free vibration analysis of rotating composite thin-walled beams", J. Am. Helicop. Soc., 42, 358-369. https://doi.org/10.4050/JAHS.42.358
  39. Song, O., Librescu, L. and Jeong, N.H. (2000), "Vibration and stability of prestwisted spinning thin-walled composite beams featuring bending-bending elastic coupling", J. Sound Vib., 237, 513-533. https://doi.org/10.1006/jsvi.2000.3100
  40. Yeo, H., Truong, K.V. and Ormiston, R.A. (2010), "Assessment of 1-D Versus 3-D Methods for Modeling Rotor Blade Structural Dynamics", 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Orlando, April.
  41. Yoo, H.H., Lee, S.H. and Shin, S.H. (2005), "Flapwise bending vibration analysis of rotating multilayered composite beams", J. Sound Vib., 286, 745-761. https://doi.org/10.1016/j.jsv.2004.10.007

Cited by

  1. Accurate Nonlinear Dynamics and Mode Aberration of Rotating Blades vol.85, pp.11, 2018, https://doi.org/10.1115/1.4040693
  2. Analysis of Stokes flows by Carrera unified formulation vol.5, pp.3, 2018, https://doi.org/10.12989/aas.2018.5.3.363
  3. Three-dimensional vibration analysis of rotating pre-twisted cylindrical isotropic and functionally graded shell panels vol.517, pp.None, 2016, https://doi.org/10.1016/j.jsv.2021.116581
  4. A unified quasi-three-dimensional solution for vibration analysis of rotating pre-twisted laminated composite shell panels vol.282, pp.None, 2016, https://doi.org/10.1016/j.compstruct.2021.115072