DOI QR코드

DOI QR Code

Aloe-Emodin Protects RIN-5F (Pancreatic β-cell) Cell from Glucotoxicity via Regulation of Pro-Inflammatory Cytokine and Downregulation of Bax and Caspase 3

  • Alshatwi, Ali A (Adipogenesis and Immunobiology Research Lab, Department of Food Sciences and Nutrition, College of Food Sciences and Agriculture, King Saud University) ;
  • Subash-Babu, P. (Adipogenesis and Immunobiology Research Lab, Department of Food Sciences and Nutrition, College of Food Sciences and Agriculture, King Saud University)
  • Received : 2015.05.22
  • Accepted : 2015.09.15
  • Published : 2016.01.01

Abstract

To determine the protective effect of aloe-emodin (AE) from high glucose induced toxicity in RIN-5F (pancreatic ${\beta}$-cell) cell and restoration of its function was analyzed. RIN-5F cells have been cultured in high glucose (25 mM glucose) condition, with and without AE treatment. RIN-5F cells cultured in high glucose decreased cell viability and increased ROS levels after 48 hr compared with standard medium (5.5 mM glucose). Glucotoxicity was confirmed by significantly increased ROS production, increased pro-inflammatory (IFN-${\gamma}$, IL-$1{\beta}$,) & decreased anti-inflammatory (IL-6&IL-10) cytokine levels, increased DNA fragmentation. In addition, we found increased Bax, caspase 3, Fadd, and Fas and significantly reduced Bcl-2 expression after 48 hr. RIN-5F treated with both high glucose and AE ($20{\mu}M$) decreased ROS generation and prevent RIN-5F cell from glucotoxicity. In addition, AE treated cells cultured in high glucose were transferred to standard medium, normal responsiveness to glucose was restored within 8hr and normal basal insulin release within 24 hr was achieved when compared to high glucose.

Keywords

References

  1. Anand, S., Muthusamy, V. S., Sujatha, S., Sangeetha, K. N., Bharathi Raja, R., Sudhagar, S., Poornima Devi, N. and Lakshmi, B. S. (2010) Aloe emodin glycosides stimulate glucose transport and glycogen storage through PI3K dependent mechanism in L6 myotubes and inhibits adipocyte differentiation in 3T3L1 adipocytes. FEBS Lett. 584, 3170-3178. https://doi.org/10.1016/j.febslet.2010.06.004
  2. Baines, C. P., Kaiser, R. A., Purcell, N. H., Blair, N. S., Osinska, H., Hambleton, M. A., Brunskill, E. W., Sayen, M.R., Gottlieb, R. A., Dorn, G. W., Robbins, J. and Molkentin, J. D. (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434, 658-662. https://doi.org/10.1038/nature03434
  3. Bernard, C., Berthault, M. F., Saulnier, C. and Ktorza, A. (1999) Neogenesis vs. apoptosis as main components of pancreatic beta cell ass changes in glucose-infused normal and mildly diabetic adult rats. FASEB J. 13, 1195-1205. https://doi.org/10.1096/fasebj.13.10.1195
  4. Chen, H. C., Hsieh, W. T., Chang, W. C. and Chung, J. G. (2004) Aloeemodin induced in vitro G2/M arrest of cell cycle in human promyelocytic leukemia HL-60 cells. Food Chem. Toxicol. 42, 1251-1257. https://doi.org/10.1016/j.fct.2004.03.002
  5. Donath, M. Y., Gross, D. J., Cerasi, E. and Kaiser, N. (2001) Hyperglycemia induced beta-cell apoptosis in pancreatic islets of Psammomys obesus during development of diabetes. Diabetes 48, 738- 744.
  6. Duncan, B. D. (1957) Multiple range test for correlated and heteroscedastic means. Biometrics 13, 164-176. https://doi.org/10.2307/2527799
  7. Efanova, I. B., Zaitsev, S. V., Zhivotovsky, B., Kohler, M., Efendic, S., Orrenius, S. and Berggren, P. O. (1998) Glucose and tolbutamide induce apoptosis in pancreatic beta-cells. A process dependent on intracellular $Ca^{2+}$ concentration. J. Biol. Chem. 273, 33501-33507. https://doi.org/10.1074/jbc.273.50.33501
  8. Federici, M., Hribal, M., Perego, L., Ranalli, M., Caradonna, Z., Perego, C., Usellini, L., Nano, R., Bonini, P., Bertuzzi, F., Marlier, L. N. Davalli, A.M., Carandente, O., Pontiroli, A.E., Melino, G., Marchetti, P., Lauro, R., Sesti, G. and Folli, F. (2001) High glucose causes apoptosis in cultured human pancreatic islets of Langerhans: a potential role for regulation of specific Bcl family genes toward an apoptotic cell death program. Diabetes 50, 1290-1301. https://doi.org/10.2337/diabetes.50.6.1290
  9. Fenig, E., Nordenberg, J., Beery, E., Sulkes, J. and Wasserman, L. (2004) Combined effect of aloe-emodin and chemotherapeutic agents on the proliferation of an adherent variant cell line of Merkel cell carcinoma. Oncol. Rep. 11, 213-217.
  10. Gepts, W. and Lecompte, P. M. (1981) The pancreatic islets in diabetes. Am. J. Med. 70, 105-114. https://doi.org/10.1016/0002-9343(81)90417-4
  11. Giannoukakis, N., Rudert, W. A., Ghivizzani, S. C., Gambotto, A., Ricordi, C., Trucco, M. and Robbins, P. D. (1999) Adenoviral gene transfer of the interleukin-1 receptor antagonist protein to human islets prevents IL-1betainduced beta-cell impairment and activation of islet cell apoptosis in vitro. Diabetes 48, 1730-1736. https://doi.org/10.2337/diabetes.48.9.1730
  12. Hamman, J. H. (2008) Composition and applications of Aloe vera leaf gel. Molecules 13, 1599-1616. https://doi.org/10.3390/molecules13081599
  13. Hodgin, J. B., Nair, V., Zhang, H., Randolph, A., Harris, R. C., Nelson, R. G., Weil, E. J., Cavalcoli, J. D., Patel, J. M., Brosius, F. C. and Kretzler, M. (2013) Identification of cross-species shared transcriptional networks of diabetic nephropathy in human and mouse glomeruli. Diabetes 62, 299-308. https://doi.org/10.2337/db11-1667
  14. Jialal, I., Devaraj, S. and Venugopal, S. K. (2002) Oxidative stress, inflammation, and diabetic vasculopathies: the role of alpha tocopherol therapy. Free Radic. Res. 36, 1331-1336. https://doi.org/10.1080/1071576021000038531
  15. Lee, J. H., Jung, I. R., Choi, S. E., Lee, S. M., Lee, S. J., Han, S. J., Kim, H. J., Kim, D. J., Lee, K. W. and Kang, Y. (2014) Toxicity generated through inhibition of pyruvate carboxylase and carnitine palmitoyl transferase-1 is similar to high glucose/palmitate-induced glucolipotoxicity in INS-1 beta cells. Mol. Cell Endocrinol. 383, 48- 59. https://doi.org/10.1016/j.mce.2013.12.002
  16. Leite, M., Quinta-Costa, M., Leite, P. S. and Guimmaraes, J. E. (1999) Critical evaluation of techniques to detect and measure cell deathstudy in a model of UV radiation of the leukaemic cell line HL60. Anal. Cell Pathol. 19, 139-151. https://doi.org/10.1155/1999/176515
  17. Ly, J. D., Grubb, D. R. and Lawen, A. (2003) The mitochondrial membrane potential (${\Delta}\psi$m) in apoptosis; an update. Apoptosis 8, 115- 128. https://doi.org/10.1023/A:1022945107762
  18. Maedler, K., Spinas, G. A., Lehmann, R., Sergeev, P., Weber, M., Fontana, A., Kaiser, N. and Donath, M. Y. (2001) Glucose induces bcell apoptosis via upregulation of the Fas-receptor in human islets. Diabetes 50, 1683-1690. https://doi.org/10.2337/diabetes.50.8.1683
  19. Maedler, K., Sergeev, P., Ris, F., Oberholzer, J., Joller-Jemelka, H. I., Spinas, G. A., Kaiser, N., Halban, P. A. and Donath, M. Y. (2002) Glucose-induced beta cell production of IL-1 beta contributes to glucotoxicity in human pancreatic islets. J. Clin. Invest. 110, 851- 860. https://doi.org/10.1172/JCI200215318
  20. Mauricio, D. and Mandrup-Poulsen, T. (1998) Apoptosis and the pathogenesis of IDDM. A question of life and death. Diabetes 47, 1537- 1543. https://doi.org/10.2337/diabetes.47.10.1537
  21. Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  22. Park, M. H., Han, J. S. (2014) Padina arborescens extract protects high glucose-induced apoptosis in pancreatic b cells by reducing oxidative stress. Nutr. Res. Pract. 8, 494-500. https://doi.org/10.4162/nrp.2014.8.5.494
  23. Piro, S., Anello, M., Di Pietro, C., Lizzio, M. N., Patan, G., Rabuazzo, A. M., Vigneri, R., Purrello, M. and Purrello, F. (2002) Chronic exposure to free fatty acids or high glucose induces apoptosis in rat pancreatic islets: possible role of oxidative stress. Metabolism 51, 1340-1347. https://doi.org/10.1053/meta.2002.35200
  24. Robertson, R. P., Olson, L. K. and Zhang, H. J. (1994) Differentiating glucose toxicity from glucose desensitization: a new message from the insulin gene. Diabetes 43, 1085-1089. https://doi.org/10.2337/diab.43.9.1085
  25. Saito, K., Yaginuma, N. and Takahashi, T. (1979) Differential volumetry of alpha, beta and delta cells in the pancreatic islets of diabetic and non diabetic subjects. Tohoku J. Exp. Med. 129, 273-283. https://doi.org/10.1620/tjem.129.273
  26. Subash-Babu, P. and Alshatwi, A. A. (2012) Aloe-emodin inhibits adipocyte differentiation and maturation during in vitro human mesenchymal stem cell adipogenesis. J. Biochem. Mol. Toxicol. 26, 291-300. https://doi.org/10.1002/jbt.21415
  27. Subash-Babu, P., Ignacimuthu, S. and Alshatwi, A. A. (2015) Nymphayol increases glucose-stimulated insulin secretion by RIN-5F cells and GLUT4-mediated insulin sensitization in type 2 diabetic rat liver. Chem. Biol. Interact. 25, 72-81.
  28. Tajiri, Y., Moller, C. and Grill, V. (1977) Long-term effects of aminoguanidine on insulin release and biosynthesis: evidence that the formation of advanced glycosylation end products inhibits B cell function. Endocrinology 138, 273-280.
  29. Wang, H. and Joseph, J. A. (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med. 27, 612-616. https://doi.org/10.1016/S0891-5849(99)00107-0
  30. Wasserman, L., Avigad, S., Beery, E., Nordenberg, J. and Fenig, E. (2002) The effect of aloe emodin on the proliferation of a new Merkel carcinoma cell line. Am. J. Dermatopathol. 24, 17-22. https://doi.org/10.1097/00000372-200202000-00003
  31. Winnay, J. N., Dirice, E., Liew, C. W., Kulkarni, R. N. and Kahn, C. R. (2014) $p85{\alpha}$ deficiency protects ${\beta}$-cells from endoplasmic reticulum stress-induced apoptosis. Proc. Natl. Acad. Sci. U.S.A. 111, 1192-1197. https://doi.org/10.1073/pnas.1322564111
  32. Yuan, J. S., Reed, A., Chen, F. and Stewart, C. N. Jr. (2006) Statistical analysis of real-time PCR data. BMC Bioinformatics 7, 85. https://doi.org/10.1186/1471-2105-7-85
  33. Zhang, X., Zhang, R., Lv, P., Yang, J., Deng, Y., Xu, J., Zhu, R., Zhang, D. and Yang, Y. (2015) Emodin up-regulates glucose metabolism, decreases lipolysis, and attenuates inflammation in vitro. J. Diabetes 7, 360-368. https://doi.org/10.1111/1753-0407.12190

Cited by

  1. Aloe‐emodin: A review of its pharmacology, toxicity, and pharmacokinetics vol.34, pp.2, 2016, https://doi.org/10.1002/ptr.6532
  2. Antidiabetic potential of anthraquinones: A review vol.34, pp.3, 2016, https://doi.org/10.1002/ptr.6544
  3. Flavonoids Identification and Pancreatic Beta-Cell Protective Effect of Lotus Seedpod vol.9, pp.8, 2020, https://doi.org/10.3390/antiox9080658
  4. Effect of dietary pomegranate peel (Punica granatum L.) and Aloe vera gel (Aloe barbadensis miller) supplementation on testicular antioxidant biomarkers and spermatogenesis enzymes in mature V‐L vol.105, pp.1, 2021, https://doi.org/10.1111/jpn.13427
  5. Design, synthesis and anti‐inflammatory study of novel N‐heterocyclic substituted Aloe‐emodin derivatives vol.97, pp.2, 2021, https://doi.org/10.1111/cbdd.13788
  6. Identification of sphingosine 1-phosphate level and MAPK/ERK signaling in pancreatic β cells vol.26, pp.4, 2021, https://doi.org/10.6065/apem.2040266.133