DOI QR코드

DOI QR Code

NDRG2 Expression Decreases Tumor-Induced Osteoclast Differentiation by Down-regulating ICAM1 in Breast Cancer Cells

  • Kim, Bomi (Department of Biological Science and the Research Center for Women's Disease, Sookmyung Women's University) ;
  • Nam, Sorim (Department of Biological Science and the Research Center for Women's Disease, Sookmyung Women's University) ;
  • Lim, Ji Hyun (Department of Biological Science and the Research Center for Women's Disease, Sookmyung Women's University) ;
  • Lim, Jong-Seok (Department of Biological Science and the Research Center for Women's Disease, Sookmyung Women's University)
  • Received : 2015.07.20
  • Accepted : 2015.09.08
  • Published : 2016.01.01

Abstract

Bone matrix is properly maintained by osteoclasts and osteoblasts. In the tumor microenvironment, osteoclasts are increasingly differentiated by the various ligands and cytokines secreted from the metastasized cancer cells at the bone metastasis niche. The activated osteoclasts generate osteolytic lesions. For this reason, studies focusing on the differentiation of osteoclasts are important to reduce bone destruction by tumor metastasis. The N-myc downstream-regulated gene 2 (NDRG2) has been known to contribute to the suppression of tumor growth and metastasis, but the precise role of NDRG2 in osteoclast differentiation induced by cancer cells has not been elucidated. In this study, we demonstrate that NDRG2 expression in breast cancer cells has an inhibitory effect on osteoclast differentiation. RAW 264.7 cells, which are monocytic preosteoclast cells, treated with the conditioned media (CM) of murine breast cancer cells (4T1) expressing NDRG2 are less differentiated into the multinucleated osteoclast-like cells than those treated with the CM of 4T1-WT or 4T1-mock cells. Interestingly, 4T1 cells stably expressing NDRG2 showed a decreased mRNA and protein level of intercellular adhesion molecule 1 (ICAM1), which is known to enhance osteoclast maturation. Osteoclast differentiation was also reduced by ICAM1 knockdown in 4T1 cells. In addition, blocking the interaction between soluble ICAM1 and ICAM1 receptors significantly decreased osteoclastogenesis of RAW 264.7 cells in the tumor environment. Collectively, these results suggest that the reduction of ICAM1 expression by NDRG2 in breast cancer cells decreases osteoclast differentiation, and demonstrate that excessive bone resorption could be inhibited via ICAM1 down-regulation by NDRG2 expression.

Keywords

References

  1. Boyce, B. F. (2013) Advances in the regulation of osteoclasts and osteoclast functions. J. Dent. Res. 92, 860-867. https://doi.org/10.1177/0022034513500306
  2. Boyle, W. J., Simonet, W. S. and Lacey, D. L. (2003) Osteoclast differentiation and activation. Nature 423, 337-342. https://doi.org/10.1038/nature01658
  3. Choi, S. C., Kim, K. D., Kim, J. T., Kim, J. W., Lee, H. G., Kim, J. M., Jang, Y. S., Yoon, D. Y., Kim, K. I., Yang, Y., Cho, D. H. and Lim, J. S. (2008) Expression of human NDRG2 by myeloid dendritic cells inhibits down-regulation of activated leukocyte cell adhesion molecule (ALCAM) and contributes to maintenance of T cell stimulatory activity. J. Leukoc. Biol. 83, 89-98. https://doi.org/10.1189/jlb.0507300
  4. Clezardin, P. (2009) Integrins in bone metastasis formation and potential therapeutic implications. Curr. Cancer Drug Targets 9, 801-806. https://doi.org/10.2174/156800909789760348
  5. Coleman, R. E. (2001) Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat. Rev. 27, 165-176. https://doi.org/10.1053/ctrv.2000.0210
  6. Desgrosellier, J. S. and Cheresh, D. A. (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat. Rev. Cancer 10, 9-22. https://doi.org/10.1038/nrc2748
  7. Dib, K. (2000) BETA 2 integrin signaling in leukocytes. Front. Biosci. 5, D438-451. https://doi.org/10.2741/Pathology
  8. Ell, B. and Kang, Y. (2012) SnapShot: Bone metastasis. Cell 151, 690- 690. e1. https://doi.org/10.1016/j.cell.2012.10.005
  9. Ell, B., Mercatali, L., Ibrahim, T., Campbell, N., Schwarzenbach, H., Pantel, K., Amadori, D. and Kang, Y. (2013) Tumor-induced osteoclast miRNA changes as regulators and biomarkers of osteolytic bone metastasis. Cancer Cell 24, 542-556. https://doi.org/10.1016/j.ccr.2013.09.008
  10. Fernandes, J. C., Shi, Q., Benderdour, M., Lajeunesse, D. and Lavigne, P. (2008) An active role for soluble and membrane intercellular adhesion molecule-1 in osteoclast activity in vitro. J. Bone Miner. Metab. 26, 543-550. https://doi.org/10.1007/s00774-008-0866-0
  11. Gregory, L. S., Choi, W., Burke, L. and Clements, J. A. (2013) Breast cancer cells induce osteolytic bone lesions in vivo through a reduction in osteoblast activity in mice. PLoS One 8, e68103. https://doi.org/10.1371/journal.pone.0068103
  12. Guo, P., Huang, J., Wang, L., Jia, D., Yang, J., Dillon, D. A., Zurakowski, D., Mao, H., Moses, M. A. and Auguste, D. T. (2014) ICAM-1 as a molecular target for triple negative breast cancer. Proc. Natl. Acad. Sci. U.S.A. 111, 14710-14715. https://doi.org/10.1073/pnas.1408556111
  13. Harada, H., Kukita, T., Kukita, A., Iwamoto, Y. and Iijima, T. (1998) Involvement of lymphocyte function-associated antigen-1 and intercellular adhesion molecule-1 in osteoclastogenesis: a possible role in direct interaction between osteoclast precursors. Endocrinology 139, 3967-3975. https://doi.org/10.1210/endo.139.9.6171
  14. Hou, C. H., Lin, F. L., Tong, K. B., Hou, S. M. and Liu, J. F. (2014) Transforming growth factor alpha promotes osteosarcoma metastasis by ICAM-1 and PI3K/Akt signaling pathway. Biochem. Pharmacol. 89, 453-463. https://doi.org/10.1016/j.bcp.2014.03.010
  15. Hu, X. L., Liu, X. P., Deng, Y. C., Lin, S. X., Wu, L., Zhang, J., Wang, L. F., Wang, X. B., Li, X., Shen, L., Zhang, Y. Q. and Yao, L. B. (2006) Expression analysis of the NDRG2 gene in mouse embryonic and adult tissues. Cell Tissue Res. 325, 67-76. https://doi.org/10.1007/s00441-005-0137-5
  16. Hu, X. L., Liu, X. P., Lin, S. X., Deng, Y. C., Liu, N., Li, X. and Yao, L. B. (2004) NDRG2 expression and mutation in human liver and pancreatic cancers. World J. Gastroenterol. 10, 3518-3521. https://doi.org/10.3748/wjg.v10.i23.3518
  17. Jun, C. D., Carman, C. V., Redick, S. D., Shimaoka, M., Erickson, H. P. and Springer, T. A. (2001) Ultrastructure and function of dimeric, soluble intercellular adhesion molecule-1 (ICAM-1). J. Biol. Chem. 276, 29019-29027. https://doi.org/10.1074/jbc.M103394200
  18. Karabulut, S., Tas, F., Tastekin, D., Karabulut, M., Yasasever, C. T., Ciftci, R., Guveli, M., Fayda, M., Vatansever, S., Serilmez, M., Disci, R. and Aydiner, A. (2014) The diagnostic, predictive, and prognostic role of serum epithelial cell adhesion molecule (EpCAM) and vascular cell adhesion molecule-1 (VCAM-1) levels in breast cancer. Tumour Biol. 35, 8849-8860. https://doi.org/10.1007/s13277-014-2151-2
  19. Kettritz, R., Choi, M., Rolle, S., Wellner, M. and Luft, F. C. (2004) Integrins and cytokines activate nuclear transcription factor-kappaB in human neutrophils. J. Biol. Chem. 279, 2657-2665. https://doi.org/10.1074/jbc.M309778200
  20. Kim, C. H., Lee, K. H., Lee, C. T., Kim, Y. W., Han, S. K., Shim, Y. S. and Yoo, C. G. (2004) Aggregation of beta2 integrins activates human neutrophils through the IkappaB/NF-kappaB pathway. J. Leukoc. Biol. 75, 286-292. https://doi.org/10.1189/jlb.0103038
  21. Kim, M. J., Kim, H. S., Lee, S. H., Yang, Y., Lee, M. S. and Lim, J. S. (2014a) NDRG2 controls COX-2/PGE(2)-mediated breast cancer cell migration and invasion. Mol. Cells 37, 759-765. https://doi.org/10.14348/molcells.2014.0232
  22. Kim, M. J., Lim, J., Yang, Y., Lee, M. S. and Lim, J. S. (2014b) N-myc downstream-regulated gene 2 (NDRG2) suppresses the epithelialmesenchymal transition (EMT) in breast cancer cells via STAT3/ Snail signaling. Cancer Lett. 354, 33-42. https://doi.org/10.1016/j.canlet.2014.06.023
  23. Kim, Y. J., Yoon, S. Y., Kim, J. T., Choi, S. C., Lim, J. S., Kim, J. H., Song, E. Y., Lee, H. G., Choi, I. and Kim, J. W. (2009) NDRG2 suppresses cell proliferation through down-regulation of AP-1 activity in human colon carcinoma cells. Int. J. Cancer. 124, 7-15. https://doi.org/10.1002/ijc.23945
  24. Kotteas, E. A., Boulas, P., Gkiozos, I., Tsagkouli, S., Tsoukalas, G. and Syrigos, K. N. (2014) The intercellular cell adhesion molecule-1 (icam-1) in lung cancer: implications for disease progression and prognosis. Anticancer Res. 34, 4665-4672.
  25. Kurachi, T., Morita, I. and Murota, S. (1993) Involvement of adhesion molecules LFA-1 and ICAM-1 in osteoclast development. Biochim. Biophys. Acta 1178, 259-266. https://doi.org/10.1016/0167-4889(93)90202-Z
  26. Lee, M. (2014) Prognostic impact of epithelial cell adhesion molecule in ovarian cancer patients. J. Gynecol. Oncol. 25, 352-354. https://doi.org/10.3802/jgo.2014.25.4.352
  27. Liu, S., Yang, P., Kang, H., Lu, L., Zhang, Y., Pan, J. and Rui, Y. C. (2010) NDRG2 induced by oxidized LDL in macrophages antagonizes growth factor productions via selectively inhibiting ERK activation. Biochim. Biophys. Acta 1801, 106-113. https://doi.org/10.1016/j.bbalip.2009.09.022
  28. Lu, X., Mu, E., Wei, Y., Riethdorf, S., Yang, Q., Yuan, M., Yan, J., Hua, Y., Tiede, B. J., Lu, X., Haffty, B. G., Pantel, K., Massague, J. and Kang, Y. (2011) VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging alpha4beta1- positive osteoclast progenitors. Cancer Cell 20, 701-714. https://doi.org/10.1016/j.ccr.2011.11.002
  29. Lu, Y. T., Chen, P. G. and Liu, S. F. (2002) Time course of lung ischemia- reperfusion-induced ICAM-1 expression and its role in ischemia- reperfusion lung injury. J. Appl. Physiol (1985). 93, 620-628. https://doi.org/10.1152/japplphysiol.01200.2001
  30. Melotte, V., Qu, X., Ongenaert, M., van Criekinge, W., de Bruine, A. P., Baldwin, H. S. and van Engeland, M. (2010) The N-myc downstream regulated gene (NDRG) family: diverse functions, multiple applications. FASEB J. 24, 4153-4166. https://doi.org/10.1096/fj.09-151464
  31. Mercer, R. R., Miyasaka, C. and Mastro, A. M. (2004) Metastatic breast cancer cells suppress osteoblast adhesion and differentiation. Clin. Exp. Metastasis 21, 427-435. https://doi.org/10.1007/s10585-004-1867-6
  32. Oh, S. S., Kim, D., Kim, D. H., Chang, H. H., Sohn, K. C., Kim, K. H., Jung, S. H., Lee, B. K., Kim, J. H. and Kim, K. D. (2012) NDRG2 correlated with favorable recurrence-free survival inhibits metastasis of mouse breast cancer cells via attenuation of active TGF-beta production. Carcinogenesis 33, 1882-1888. https://doi.org/10.1093/carcin/bgs211
  33. Roebuck, K. A. and Finnegan, A. (1999) Regulation of intercellular adhesion molecule-1 (CD54) gene expression. J. Leukoc. Biol. 66, 876-888. https://doi.org/10.1002/jlb.66.6.876
  34. Rosette, C., Roth, R. B., Oeth, P., Braun, A., Kammerer, S., Ekblom, J. and Denissenko, M. F. (2005) Role of ICAM1 in invasion of human breast cancer cells. Carcinogenesis. 26, 943-950. https://doi.org/10.1093/carcin/bgi070
  35. Schroder, C., Witzel, I., Muller, V., Krenkel, S., Wirtz, R. M., Janicke, F., Schumacher, U. and Milde-Langosch, K. (2011) Prognostic value of intercellular adhesion molecule (ICAM)-1 expression in breast cancer. J. Cancer Res. Clin. Oncol. 137, 1193-1201. https://doi.org/10.1007/s00432-011-0984-2
  36. Smith, C. W. (2008) 3. Adhesion molecules and receptors. J. Allergy Clin. Immunol. 121, S375-379; quiz S414. https://doi.org/10.1016/j.jaci.2007.07.030
  37. Suzuki, M., Hashizume, M., Yoshida, H., Shiina, M. and Mihara, M. (2011) Intercellular adhesion molecule-1 on synovial cells attenuated interleukin-6-induced inhibition of osteoclastogenesis induced by receptor activator for nuclear factor kappaB ligand. Clin. Exp. Immunol. 163, 88-95. https://doi.org/10.1111/j.1365-2249.2010.04276.x
  38. Takahashi, M., Furihata, M., Akimitsu, N., Watanabe, M., Kaul, S., Yumoto, N. and Okada, T. (2008) A highly bone marrow metastatic murine breast cancer model established through in vivo selection exhibits enhanced anchorage-independent growth and cell migration mediated by ICAM-1. Clin. Exp. Metastasis 25, 517-529. https://doi.org/10.1007/s10585-008-9163-5
  39. Tang, M. L. and Fiscus, L. C. (2001) Important roles for L-selectin and ICAM-1 in the development of allergic airway inflammation in asthma. Pulm. Pharmacol. Ther. 14, 203-210. https://doi.org/10.1006/pupt.2001.0293
  40. Tani-Ishii, N., Penninger, J. M., Matsumoto, G., Teranaka, T. and Umemoto, T. (2002) The role of LFA-1 in osteoclast development induced by co-cultures of mouse bone marrow cells and MC3T3- G2/PA6 cells. J. Periodontal Res. 37, 184-191. https://doi.org/10.1034/j.1600-0765.2002.00610.x
  41. Thielemann, A., Baszczuk, A., Kopczynski, Z., Nowak, A. and Grodecka- Gazdecka, S. (2014) The clinical usefulness of assessing the concentration of cell adhesion molecules sVCAM-1 and sICAM-1 in the serum of women with primary breast cancer. Contemp. Oncol. 18, 252-259.
  42. Tsai, C. L., Chen, W. C., Hsieh, H. L., Chi, P. L., Hsiao, L. D. and Yang, C. M. (2014) TNF-alpha induces matrix metalloproteinase- 9-dependent soluble intercellular adhesion molecule-1 release via TRAF2-mediated MAPKs and NF-kappaB activation in osteoblastlike MC3T3-E1 cells. J. Biomed. Sci. 21, 12. https://doi.org/10.1186/1423-0127-21-12
  43. Tsakadze, N. L., Sen, U., Zhao, Z., Sithu, S. D., English, W. R. and D'Souza, S. E. (2004) Signals mediating cleavage of intercellular adhesion molecule-1. Am. J. Physiol. Cell Physiol. 287, C55-63. https://doi.org/10.1152/ajpcell.00585.2003
  44. Vainer, B. and Nielsen, O. H. (2000) Changed colonic profile of Pselectin, platelet-endothelial cell adhesion molecule-1 (PECAM-1), intercellular adhesion molecule-1 (ICAM-1), ICAM-2, and ICAM-3 in inflammatory bowel disease. Clin. Exp. Immunol. 121, 242-247. https://doi.org/10.1046/j.1365-2249.2000.01296.x
  45. Verma, N. K. and Kelleher, D. (2014) Adaptor regulation of LFA-1 signaling in T lymphocyte migration: Potential druggable targets for immunotherapies? Eur. J. Immunol. 44, 3484-3499. https://doi.org/10.1002/eji.201344428
  46. Weilbaecher, K. N., Guise, T. A. and McCauley, L. K. (2011) Cancer to bone: a fatal attraction. Nat. Rev. Cancer 11, 411-425. https://doi.org/10.1038/nrc3055
  47. Whiteman, S. C., Bianco, A., Knight, R. A. and Spiteri, M. A. (2003) Human rhinovirus selectively modulates membranous and soluble forms of its intercellular adhesion molecule-1 (ICAM-1) receptor to promote epithelial cell infectivity. J. Biol. Chem. 278, 11954-11961. https://doi.org/10.1074/jbc.M205329200
  48. Witkowska, A. M. and Borawska, M. H. (2004) Soluble intercellular adhesion molecule-1 (sICAM-1): an overview. Eur. Cytokine Netw. 15, 91-98.
  49. Yamamura, A., Miura, K., Karasawa, H., Morishita, K., Abe, K., Mizuguchi, Y., Saiki, Y., Fukushige, S., Kaneko, N., Sase, T., Nagase, H., Sunamura, M., Motoi, F., Egawa, S., Shibata, C., Unno, M., Sasaki, I. and Horii, A. (2013) Suppressed expression of NDRG2 correlates with poor prognosis in pancreatic cancer. Biochem. Biophys. Res. Commun. 441, 102-107. https://doi.org/10.1016/j.bbrc.2013.10.010

Cited by

  1. Effect of intercellular adhesion molecule 1 deficiency on the development of apical periodontitis vol.53, pp.3, 2016, https://doi.org/10.1111/iej.13228