DOI QR코드

DOI QR Code

Nutritional Characteristics of Forage Grown in South of Benin

  • Musco, Nadia (Department of Veterinary Medicine and Animal Production, University of Napoli Federico II) ;
  • Koura, Ivan B. (Department of Animal Sciences, Faculty of Agricultural Sciences, University of Abomey-Calavi) ;
  • Tudisco, Raffaella (Department of Veterinary Medicine and Animal Production, University of Napoli Federico II) ;
  • Awadjihe, Ghislain (Department of Animal Sciences, Faculty of Agricultural Sciences, University of Abomey-Calavi) ;
  • Adjolohoun, Sebastien (Department of Animal Sciences, Faculty of Agricultural Sciences, University of Abomey-Calavi) ;
  • Cutrignelli, Monica I. (Department of Veterinary Medicine and Animal Production, University of Napoli Federico II) ;
  • Mollica, Maria Pina (Department of Biology, University of Napoli Federico II) ;
  • Houinato, Marcel (Department of Animal Sciences, Faculty of Agricultural Sciences, University of Abomey-Calavi) ;
  • Infascelli, Federico (Department of Veterinary Medicine and Animal Production, University of Napoli Federico II) ;
  • Calabro, Serena (Department of Veterinary Medicine and Animal Production, University of Napoli Federico II)
  • 투고 : 2015.03.06
  • 심사 : 2015.04.29
  • 발행 : 2016.01.01

초록

In order to provide recommendations on the most useful forage species to smallholder farmers, eleven grass and eleven legume forages grown in Abomey-Calavi in Republic of Benin were investigated for nutritive value (i.e. chemical composition and energy content) and fermentation characteristics (i.e. gas and volatile fatty acid production, organic matter degradability). The in vitro gas production technique was used, incubating the forages for 120 h under anaerobic condition with buffalo rumen fluid. Compared to legume, tropical grass forages showed lower energy (8.07 vs 10.57 MJ/kg dry matter [DM]) and crude protein level (16.10% vs 19.91% DM) and higher cell wall content (neutral detergent fiber: 63.8% vs 40.45% DM), respectively. In grass forages, the chemical composition showed a quite high crude protein content; the in vitro degradability was slightly lower than the range of tropical pasture. The woody legumes were richer in protein and energy and lower in structural carbohydrates than herbaceous plants, however, their in vitro results are influenced by the presence of complex compounds (i.e. tannins). Significant correlations were found between chemical composition and in vitro fermentation characteristics. The in vitro gas production method appears to be a suitable technique for the evaluation of the nutritive value of forages in developing countries.

키워드

참고문헌

  1. Adjolohoun, S., A. Buldgen, C. Adandedjan, V. Decruyenaere, and P. Dardenne. 2008. Yield and nutritive value of herbaceous and browse forage legumes in the Borgou region of Benin. Trop. Grasslands 42:104-111.
  2. Adjolohoun S., M. Dahouda, C. Adandedjan, S. Toleba, V. Kindomihou, and B. Sinsin. 2013. Evaluation of biomass production and nutritive value of nine Panicum maximum ecotypes in Central region of Benin. Afr. J. Agric. Res. 8:1661-1668. https://doi.org/10.5897/AJAR12.2026
  3. Agence pour la securite de la navigation aerienne en Afrique et a Madagascar (ASECNA). 2013. Rapport annuel. Dakar, Senegal.
  4. Akinfemi, A., A. O. Adesanya, and V. E. Aya. 2009. Use of an in vitro gas production technique to evaluate some Nigerian feedstuff. American-Eurasian J. Sci. Res. 4:240-245.
  5. AOAC. 2000. Official Methods of Analysis. 2 vol., 18th edn. Association of Official Analytical Chemists, Arlington, VA, USA.
  6. Babatounde, S., M. Oumorou, V. Tchabi, T. Lecomte, M. Houinato, and C. Adandedjan. 2010. Voluntary feed intake in of dietary preferences Djallonke sheep fed on tropical forage grasses and legumes grown in Benin. Int. J. Biol. Chem. Sci. 4:1030-1043.
  7. Babatounde, S., M. Oumorou, I. Alkoiret, S. Vidjannagni, and G. A. Mensah. 2011. Relative frequencies, chemical composition and in vitro organic matter digestibility of forage consumed by sheep in humid tropic of West Africa. J. Agric. Sci. Technol. A. 1:39-47.
  8. Bauer, E., B. A. Williams, C. Voigt, R. Mosenthin, and M. W. A. Verstegen. 2001. Microbial activities of faeces from unweaned and adult pigs, in relation to selected fermentable carbohydrates. Anim. Sci. 73:313-322. https://doi.org/10.1017/S135772980005829X
  9. Buldgen A., B. Michiels, S. Adjolohoun, S. Babatounde, and C. C. Adandedjan. 2001. Research note: Production and nutritive value of grasses cultivated in the coastal area of Benin. Trop. Grass. 35:43-47.
  10. Calabro, S., M. I. Cutrignelli, G. Piccolo, F. Bovera, F. Zicarelli, M. P. Gazaneo, and F. Infascelli. 2005a. In vitro fermentation kinetics of fresh and dried silages. Anim. Feed. Sci. Technol. 123-124:129-137. https://doi.org/10.1016/j.anifeedsci.2005.04.047
  11. Calabro, S., M. I. Cutrignelli, F. Bovera, G. Piccolo, and F. Infascelli. 2005b. In vitro fermentation kinetics of carbohydrate fractions of fresh forage, silage and hay of Avena sativa. J. Sci. Food Agric. 85:1838-1844. https://doi.org/10.1002/jsfa.2186
  12. Calabro, S., S. D'Urso, M. Banoin, V. Piccolo, and F. Infascelli. 2007. Nutritional characteristics of forages from Niger. Ital. J. Anim. Sci. 6 (suppl. 1):272-274.
  13. Calabro, S., A.C. Carciofi, N. Musco, R. Tudisco, M. O. S. Gomes, and M. I. Cutrignelli. 2012. Fermentation characteristics of several carbohydrate sources for dog diets using the in vitro gas production technique. Ital. J. Anim. Sci. 12:e4.
  14. Calabro, S., M. I. Cutrignelli, V. Lo Presti, R. Tudisco, V. Chiofalo, M. Grossi, F. Infascelli, and B. Chiofalo. 2015. Characterization and effect of year of harvest on the nutritional properties of three varieties of white lupine (Lupinus albus L.). J. Sci. Food Agric. http://dx.doi.org/10.1002/jsfa.7049.
  15. Commission Regulation (EC). 2004. No 882/2004 of the European Parliament and Council on "The official controls performed to ensure the verification of compliance with feed and food law, animal health and animal welfare rules". OJL 165, 1-141, 30.04.04.
  16. Dicko, M. B., B. Diarra, S. Samassekou, and A. Ballo. 2003. Inventaire et caracterisation des zones humides au Mali. UICN (World conservation union) and GEPIS/SAWEG Groupe d'experts sur les plaines d'inondation saheliennes (Sahelian wethlands experts group), Comite local du Mali.
  17. Dzowela, B. H. and L. Hove. 1995. Effect of drying method on chemical composition and in vitro digestibility of multi-purpose tree and shrub fodders. Trop. Grasslands 29:263-269.
  18. FAO. 2006. Livestock's long shadow: Environmental issues and option. Roma, Italy.
  19. Getachew G., M. Blümmel, H. P. S. Makkar, and K. Becker. 1998. In vitro gas measuring techniques for assessment of nutritional quality of feeds: a review. Anim. Feed Sci. Technol. 72:261-281. https://doi.org/10.1016/S0377-8401(97)00189-2
  20. Groot, J. C. J., J. W. Cone, B. A. William, F. M. A. Debersaque. And E. A. Lantiga. 1996. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feedstuff. Anim. Feed Sci. Technol. 64:77-89. https://doi.org/10.1016/S0377-8401(96)01012-7
  21. Hare, M. D. and C. Phaikew. 1997. Forage seed production in northeast Thailand. In: Forage Seed Production. 2: Tropical and Subtropical Species (Eds. D. S. Loch and J. E. Ferguson). CABI Publishing, Wallingford, UK. 435-443.
  22. INSAE. 2012. Statistiques/Statistiques economiques/Produit interieur brut. Consulte le 13 Janvier 2014 sur http://www.insae-bj.org/produit-interieur.html.
  23. Koura, B. I., L. H. Dossa, B. Kassa, and M. Houinato. 2015. Adaptation of periurban cattle production systems to environmental changes: Feeding strategies of herdsmen in Southern Benin. Agroecol. Sust. Food. 39:83-98. https://doi.org/10.1080/21683565.2014.953662
  24. Melesse, A., H. Steingass, J. Boguhn, and M. Rodehutscord. 2013. In vitro fermentation characteristics and effective utilisable crude protein in leaves and green pods of Moringa stenopetala and Moringa oleifera cultivated at low and mid-altitudes. J. Anim. Physiol. Anim. Nutr. 97:537-546. https://doi.org/10.1111/j.1439-0396.2012.01294.x
  25. Menke, K. H. and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28:7-55.
  26. Nasrullah, M. Niimi, R. Akashi, and O. Kawamura. 2003. Nutritive evaluation of forage plants grown in South Sulawesi, Indonesia. Asian Australas. J. Anim. Sci. 16:693-701. https://doi.org/10.5713/ajas.2003.693
  27. Norton, B.W. 1994. The nutritive value of tree legumes. In: Forage Tree Lgumes in Tropical Agriculture (Ed. R. C. Gutteridge). CAB International, Wallingford, UK. pp. 177-191.
  28. SAS/STAT. 2000. User's Guide SAS Institute Inc. Version 8.2, Vol. 2. (4th ed.). Cary, NC, USA.
  29. Shayo, C. M. and P. Uden. 1999. Nutritional uniformity of crude protein fractions in some tropical browse plants estimated by two in vitro methods. Anim. Feed Sci. Technol. 78:141-151. https://doi.org/10.1016/S0377-8401(98)00260-0
  30. Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  31. Zicarelli, F., S. Calabro, M. I. Cutrignelli, F. Infascelli, R. Tudisco, F. Bovera, and V. Piccolo. 2011. In vitro fermentation characteristics of diets with different forage/concentrate ratios: comparison of rumen and faecal inocula. J. Sci. Food Agric. 91:1213-1221. https://doi.org/10.1002/jsfa.4302

피인용 문헌

  1. Assessment of Stress Tolerance, Productivity, and Forage Quality in T1 Transgenic Alfalfa Co-overexpressing ZxNHX and ZxVP1-1 from Zygophyllum xanthoxylum vol.7, pp.1664-462X, 2016, https://doi.org/10.3389/fpls.2016.01598
  2. L.) and varieties of lupin seeds vol.101, pp.6, 2017, https://doi.org/10.1111/jpn.12643
  3. Palatability of nine fodders species used by guinea pigs (Cavia porcellus) vol.49, pp.8, 2017, https://doi.org/10.1007/s11250-017-1386-5
  4. In vitro gas production kinetics and degradability of a diet for growing lambs: effect of fibrolytic enzyme products at different dose levels vol.15, pp.3, 2016, https://doi.org/10.1080/1828051x.2016.1209088
  5. Effect of Eucalyptus globulus leaves extracts on in vitro rumen fermentation, methanogenesis, degradability and protozoa population vol.18, pp.3, 2016, https://doi.org/10.2478/aoas-2018-0006
  6. The in vitro digestion of neutral detergent fibre and other ruminal fermentation parameters of some fibrous feedstuffs in Damascus goat (Capra aegagrus hircus) vol.28, pp.2, 2016, https://doi.org/10.22358/jafs/108990/2019
  7. Nutritional Value, Mineral Composition, Secondary Metabolites, and Antioxidant Activity of Some Wild Geophyte Sedges and Grasses vol.8, pp.12, 2016, https://doi.org/10.3390/plants8120569
  8. Effect of Dried Leaves of Leucaena leucocephala on Rumen Fermentation, Rumen Microbial Population, and Enteric Methane Production in Crossbred Heifers vol.10, pp.2, 2016, https://doi.org/10.3390/ani10020300
  9. The effects of compound treatment of Aspergillus oryzae and fibrolytic enzyme on in vitro degradation, gas production and fermentative profile of maize silage and sugarcane silage vol.159, pp.1, 2016, https://doi.org/10.1017/s002185962100037x
  10. Comparative physiological and metabolic analyzes of two Italian ryegrass (Lolium multiflorum) cultivars with contrasting salinity tolerance vol.172, pp.3, 2016, https://doi.org/10.1111/ppl.13374
  11. Diversity and nutritional values of leaves of trees and shrubs used as supplements for goats in the sub-humid areas of Benin (West Africa) vol.53, pp.1, 2016, https://doi.org/10.1007/s11250-021-02559-9