References
- S. Haykin, "Signal Processing: Where Physics and Mathematics Meet," IEEE Signal Process. Mag., vol. 18, no. 4, July 2001, pp. 6-7. https://doi.org/10.1109/MSP.2001.939832
- B. Zhou, Y. Peng, and D. Hwang, "Pipeline FFT Architectures Optimized for FPGAs," Int. J. Reconfigurable Comput., vol. 2009, Jan. 2009, pp. 1-9.
- J.M. Palmer, " The Hybrid Architecture Parallel Fast Fourier Transform (HAPFFT) ," M.S. thesis, Brig ham Young University, Provo, UT, USA, 2005.
- H. Kaptan, A. Tangel, S. Sa hin, "FPGA Implementation of FFT Algorithms Using Floating Point Numbers," Int. Conf. Electr. Electron. Eng., Bursa, Turkey, Dec. 2007, pp. 114-117.
- J. Gajewski and M. Przywecki, Deliverable D.4.4: Events Proceedings, Porta Optica Study, June 26, 2007, p. 61. Accessed June 15, 2013. http://www.porta-optica.org/publications/POS-D4.4_Events_proceedings.pdf
- K. Ishihara, "Frequency-Dom ain Equalization for High-Speed Fiber-Optic Transmission Systems," Wireless Signal Process. Netw. Workshop, NTT Network Innovation Laboratories NTT Corporation, Tohoku University, Japan, 2010.
- Chromatic Dispersion (Optics), Knowledgebase at FiberOptic.com, 2012. Accessed June 15, 2013. http://www.fiberoptic.com/fiber_characterization/pdf/chromatic_dispersion.pdf
- M. Mussolin, "Digital Signal Processing Algorithms for High- Speed Coherent Transmission in Optical Fibers," M.S. thesis, Universita deglistudi di Padova Facolta di Ingegneria, Padova, Italy, 2010.
- G. Chauvel, Dispersion in Optical Fibers, Anritsu Corporation, 2012. Accessed June 15, 2013. http://www.ausoptic.com/Alltopic/Download/Disp_in_Opt_Fibers_PMD_CD.pdf.http://www.mericipristroje.eu/download/files/White-Paper_Dispersion-in-Optical-Fibers_PMD_CD_Ltr.pdf
- F. Dinechin, H. Takeugming, and J.-M. Tanguy, "A 128-Tap Complex FIR Filter Processing 20 Giga-Samples/s in a Single FPGA," Asilomar Conf. Signals , Syst. Comput., Pacific Groove, CA, USA, Nov. 7-10, 2010, pp. 841-844.
- A.V. Oppenheim and R.W. Shafer, "Discrete-Time Signal Processing," 2nd ed., NJ, USA: Prentice Hall, 1998, p. 657.
- V.F.J. Alberto, R.T.R. Jesus, and O.M. Alejandro, "VHDL Core for 1024-Point Radix-4 FFT Computation," Int. Conf. Reconfigurable Comput. FPGA' s, Puebla City, Mexico, Sept. 28-30, 2005, pp. 4-24.
- B. Baas, Handout FFT2.pdf, UC Davis, 2012. Accessed June 15, 2013. http://web.ece.ucdavis.edu/-bbaas/281/slides/Handout-.fft2.pdf
- A. Bonilla et al., "Design and Implementation of Fast Fourier Transform Algorithm in FPGA," Simposio Brasileiro de Telecomunicacoes, Brasilia, Brazil, Sept. 13-16, 2012.
- C. Wu, "Implementing the Radix-4 Decimation in Frequency (DIF) Fast Fourier Transform (FFT) Algorithm Using a TMS320C80 D0 DSP," Texas Instruments, Taiwan, Application Report: SPRA152, 1998.
- S. Gallagher, Mapping DSP Algorithms into FPGAs, Xilinx Inc., 2012. Accessed June 15, 2013. http://www.ieee.li/pdf/viewgraphs/mapping_dsp_algorithms_into_fpgas.pdf
- Xilinx, DS260 LogiCORE IP Fast Fourier Transform v7.1, Xilinx Inc., 2012. Accessed June 15, 2013. http://www.xilinx.com/support/documentation/ip_documentation/xfft_ds260.pdf
- Commsonic, General-Purpose FFT Core, CMS0001. Accessed June 15, 2013. http://www.commsonic.com/downloads/sd0001.pdf
- Xilinx, DS260 LogiCORE IP DSP48 Macro v2.0. Accessed June 15, 2013. http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_3/sysgen_ref.pdf, 2012
- A. Ferizi et al., "Design and Implementation of a Fixed-Point Radix-4 FFT Optimized for Local Positioning in Wireless Sensor Networks," Int. Multi-conf. Syst., Signals Devices, Chemnitz, Germany, Mar. 20-23, 2012, pp. 1-4.
Cited by
- Fully passive-alignment pluggable compact parallel optical interconnection modules based on a direct-butt-coupling structure for fiber-optic applications vol.55, pp.2, 2015, https://doi.org/10.1117/1.oe.55.2.026107
- Design of Eight Parallel 512-Point MDF FFT/IFFT Processor for WPAN Applications vol.28, pp.5, 2015, https://doi.org/10.1142/s0218126619500889
- Hardware chip performance analysis of different FFT architecture vol.108, pp.7, 2015, https://doi.org/10.1080/00207217.2020.1819441