

ETRI Journal, Volume 37, Number 4, August 2015 © 2015 Gokhan Polat et al. 667
http://dx.doi.org/10.4218/etrij.15.0114.0678

The third-party FFT IP cores available in today’s
markets do not provide the desired speed demands for
optical communication. This study deals with the design
and implementation of a 256-point Radix-4 100 Gbit/s
FFT, where computational steps are reconsidered and
optimized for high-speed applications, such as radar and
fiber optics. Alternative methods for FFT implementation
are investigated and Radix-4 is decided to be the optimal
solution for our fully parallel FPGA application. The
algorithms that we will implement during the
development phase are to be tested on a Xilinx Virtex-6
FPGA platform. The proposed FFT core has a fully
parallel architecture with a latency of nine clocks, and the
target clock rate is 312.5 MHz.

Keywords: Chromatic dispersion, optical
communication, Dragonfly (Radix-4), fully parallel
architecture, FFT, FPGA.

Manuscript received June 8, 2014; revised Feb. 19, 2015; accepted Mar. 19, 2015.
This research was supported by C2TECH, partner of Celtic-EONET project CP07-006.
Gokhan Polat (gokhanpol@gmail.com), Sitki Ozturk (sozturk@kocaeli.edu.tr), and Mehmet

Yakut (corresponding author, myakut@kocaeli.edu.tr) are with the Department of Electronics
and Telecommunication Engineering, Faculty of Engineering, Kocaeli University, Kocaeli,
Turkey.

I. Introduction

Increasing demands for long-distance and high-speed data
communication bring about wide bandwidth and low
attenuation necessities. So, copper wires are gradually replaced
with optical wires due to their wide bandwidth and lower
attenuation ability. However, signal transmission via light
introduces some disadvantages, such as chromatic dispersion
(CD) and polarization mode dispersion (PMD). Signal
processing is at its best when it successfully combines the
unique ability of mathematics to generalize with both the
insight and prior information gained from the underlying
physics of the problem at hand [1]. The CD effect on a fiber
optic transmission line can be modeled and distortion effects
can be compensated using digital signal processing (DSP)
techniques instead of a fiber Bragg grating–based dispersion
compensator.

Although there are time-domain solutions for CD
compensation, frequency domain–based compensation is
commonly preferred in DSP applications. A Fourier
transformation is widely used to transfer an examined signal
into the frequency domain. A fast Fourier transform (FFT), as
an efficient algorithm to calculate a discrete Fourier transform
(DFT), is one of the most significant operations in modern DSP
systems [2]. An FFT strongly minimizes the cost of
implementing a DFT on digital computing systems [3].

There is no way to buffer optical digital signals for a long
time because data is continuously fed through an optical
transmission line. So, a real-time solution is inevitable for CD
compensation. Input values should be processed as fast as

Design and Implementation of
256-Point Radix-4 100 Gbit/s FFT Algorithm into

 FPGA for High-Speed Applications

 Gokhan Polat, Sitki Ozturk, and Mehmet Yakut

668 Gokhan Polat et al. ETRI Journal, Volume 37, Number 4, August 2015
http://dx.doi.org/10.4218/etrij.15.0114.0678

possible to obtain outputs in real time [4]. To maintain a high-
speed data flow, a solution has to be based on a parallel
architecture. Field-programmable gate arrays (FPGAs) are
very attractive platforms for high-speed signal processing due
to their parallel processing abilities, such as those used in our
FFT-based CD compensation.

The rest of this paper is organized as follows. Section II
addresses CD compensation. Section III gives background
information about FFT and related hardware solutions.
Section IV presents the synthesis results. Finally, Section V
summarizes the paper.

II. CD Compensation in Optical Communication

Fiber-optic lines are an ideal transmission environment
for high-speed data communication; however, such an
environment has its own disadvantages, such as CD and PMD.
This work is focused on CD compensation.

Different wavelengths of light have different velocities,
known as CD. In optical lines, every pulse that is sent by a
transmitter reaches a given destination having a different time
delay to the next. CD, or the aforementioned time delay
between different colors, is defined as the group delay between
different wavelengths of light, as shown in Fig. 1 [5].

The transfer function of a fiber with CD can be written as in
(1) below [6]. The expression for group velocity is given in (2)
[7]. The group-velocity dispersion parameter, D, is defined as
the time delay between two different spectral components
separated by a certain wavelength interval. The parameters
given in (1) are as follows: c is the speed of light, L is the
transmission line length, D is the CD factor, λ is the wavelength
of color, β is the propagation constant, and vg is the group
velocity.

  
2

2π
j

c ,
DL

f
H f e



 (1)

2

g

2 2 2 2
g

d2πc d 2πc
.

dd ()

v
D

v


  

   (2)

The CD effect can be corrected in either the electrical or
optical domain. One adopted method for solving the problem
of compensation involves the usage of dispersion
compensating fiber (DCF), which can cause additional loss on
a signal; thus, a system needs additional optical amplifiers that
can increase the noise and cost of the system [8]. Therefore, a
compensation method that utilizes the electrical domain with
DSP is commonly preferred. Compensating with a DCF
module on a fiber-optic line is shown in Fig. 2.

Electrical compensation methods can be performed both in
time and frequency domains. Savory’s method, adaptive filters,

Fig. 1. Chromatic dispersion.

Amplitude

Time

Wavelength

Fig. 2. Compensating with DCF.

DC modules
Fiber span

Tx Rx

L0

Delay (ps)

Fig. 3. FFT method for CD compensation.

Fiber channel
H(w) FFT

Inverse filter
1/H(w) IFFT

Optical
data

Filtered
data

and the constant modulus algorithm are examples of such
methods performed in the time domain. The FFT method and
its derivatives can be considered as examples of such methods
performed in the frequency domain [8]. The CD effect causes a
time-domain delay in different color groups. This effect brings
phase distortion to the frequency domain. Fortunately, the CD
effect is linear, which means it is stable, predictable, and
controllable [9]. Both the multiplication of the frequency
responses of the signals and the inverse of the CD channel
transfer function compensate the CD effect. Finally, corrected
signals should be transferred to the time domain using an IFFT
algorithm, as shown in Fig. 3.

In this study, the CD effect is compensated by means of DSP
algorithms running on FPGA. However, the acquisition of
optical signals into an FPGA should be considered precisely.
In this paper, a possible solution is designed for the
40 GSamples/s scenario. The details for this scenario are
depicted in Fig. 4. 40 GSamples/s optical data is carried by two
polarizations. A 40 GSamples/s signal is split by a polarization
splitter into two 20 GSamples/s signals. Each 20 GSamples/s
polarization carries its own I and Q components of the optical
signals (see Fig. 4). Data from an optical channel is passed to
an FPGA via four high-speed time-interleaved 5-bit ADCs

ETRI Journal, Volume 37, Number 4, August 2015 Gokhan Polat et al. 669
http://dx.doi.org/10.4218/etrij.15.0114.0678

Fig. 4. Applying 40 GSample/s signal to FPGA.

POLx CH_I

POLx CH_Q

POLx

20 G
optical

20 G
optical

20 G
optical

40 G
optical

POLy

20 G
optical

POLy CH_I

POLy CH_Q

20 G
optical

20 G
optical

ADC 5 G 5 bit

P1

ADC 5 G 5 bit

P5
P2 P6

P2 P6
P2 P6

P1 P5
P2 P6

P2 P6
P2 P6

20 GTX
50 Gb/s 1 bit

5 G/32 bit=156M

20 GTX
50 Gb/s 1 bit

5 G/32 bit=156M

32 bit
POLx

40
 b

it

iP
1

Q
P

1
iP

2
Q

P
2

iP
3

Q
P

3
iP

4
Q

P
4

iP
5

Q
P

5
iP

6
Q

P
6

iP
7

Q
P

7
iP

8
Q

P
8

IP
9

Q
P

9
IP

10

Q
P

10

IP
11

Q

P
11

IP

12

Q
P

12

5
bi

t
5

bi
t

5b
it

5

bi
t

5
bi

t
5

bi
t

5
bi

t
5

bi
t

sampled at 50 ps time shifts. The data obtained from the ADCs
is transferred into the FPGA serially, bit by bit, using high-
speed transmission channels (one GTX for each data bit).
FPGAs can obtain high-speed serial data with high-speed
transmission channels known as GTXs [10]. 20 GTX channels
are used for each I and Q component per polarization. Sampled
bits from time-interleaved ADC’s are shown in Fig. 4. As can
be seen from the bit numbers of the same column, there is one
clock time shift between successive rows. This indicates that it
is necessary to suitably order the data that is to be applied to the
FFT core. Higher data communication speeds are possible by
using faster ADCs and high-speed transmission channels such
as GTHs and GTZs.

III. Fourier Transformation and Efficient FFT
Implementation

1. FFT and Radix

A DFT of a signal provides a representation of the signal
in the frequency domain. An FFT is a fast algorithm for
calculating a DFT. An FFT provides a speed advantage by
using the symmetrical and periodical values of a phase factor
(twiddle factor) to calculate a DFT [4]. Equations for an N-
point DFT are given in (3) and (4) below [11], where n
represents the discrete time-domain index and k is the
normalized frequency-domain index.

1

0

() () ,
N

kn
N

n

X k x n W




  (3)

Fig. 5. Comparing number of stages in 16-point Radix-2 and 16-
point Radix-4 FFTs [13].

Radix-2, 16-point FFT

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Stage 0 Stage 1 Stage 2 Stage 3

Radix-4, 16-point FFT

Stage 0 Stage 1

2πj

cos 2π j sin 2π .
kn

kn N
N

kn kn
W e

N N

   
          

   
 (4)

Different FFT algorithms provide different benefits, but there
is always a trade-off between computation speed and used
FPGA area. Reducing an FFT’s computation time reduces
hardware complexity [12]. Different decomposition methods
are available, such as Radix-2 (Radix-2 nodes are known as
Butterfly nodes) and Radix-4 (Radix-4 nodes are known as
Dragonfly nodes). The different stages of an N-point FFT can
be calculated in log 4(N) operations for Radix-4 and in log 2(N)

670 Gokhan Polat et al. ETRI Journal, Volume 37, Number 4, August 2015
http://dx.doi.org/10.4218/etrij.15.0114.0678

operations for Radix-2, as shown in Fig. 5.
If the computational cost of multiplication is taken into

consideration, then Radix-2 brings additional integer twiddle
factors at angles of 0° and 180°, and Radix-4 brings additional
integer twiddle factors at angles of 0°, 90°, 180°, and 270°.
Sine and cosine equivalents of the aforementioned angles
within a unit circle are simple integers and do not place any
additional burden on the multiplication load, as shown in Fig. 6.
Although a high Radix number reduces the number of
computation stages, Radix-8 is not preferred, because it brings
fractional twiddle factors (2) in a unit circle at angles of 45°,
135°, 225°, and 315° [13]. If Radix-4 is compared to the
Radix-2 algorithm, then Radix-4 has a higher complexity and
less computational cost. A decimation-in-frequency (DIF)
Radix-4 FFT approach is used in our implementation, as it is an
approach that is frequently preferred to reduce computational

Fig. 6. Twiddle factors for Radix-2, Radix-4, and Radix-8.

2
(1 j)

2


Radix-8
7 /8N

NW

Radix-8
Radix-4
Radix-2

0
NW 1

/8N
NW

Radix-8

2
(1 j)

2


/4N
NW

Radix-8
Radix-4

–j

3 /8N
NW

Radix-8 2
(1 j)

2
 

/2N
NW

Radix-8
Radix-4
Radix-2

–1

5 /8N
NW

Radix-8

2
(1 j)

2
 

3 /4N
NW

j
Radix-4
Radix-8

Fig. 7. Radix-4 DIF FFT Dragonfly [15].

Radix-4 DIF FFT Dragonfly x(n)
xa+j ya

x(n+N/4)
xb+j yb

x(n+N/2)
xc+j yc

x(n+3N/4)
xd+j yd

Wn

W2n

W3n

x(4r)
xa+j ya

x(4r+1)
xb+j yb

x(4r+2)
xc+j yc

x(4r+3)
xd+j yd

Wn = Wb = Cb + j (–Sb)
W2n = Wc = Cc + j (–Sc)
W3n = Wd = Cd + j (–Sb)

xa = xa+xb+xc+xd
ya = ya+yb+yc+yd
xb = (xa+yb–xc–yd)Cb – (ya–xb–yc+xd)(–Sb)
yb = (ya+xb–yc+xd)Cb + (xa+yb–xc–yd)(–Sb)
xc = (xa–xb+xc–xd)Cc – (ya–yb+yc–yd)(–Sc)
yc = (ya–yb+yc–yd)Cc + (xa–xb+xc–xd)(–Sc)
xd = (xa–yb–xc+yd)Cd – (ya+xb–yc–xd)(–Sd)
yd = (ya+xb–yc–xd)Cd + (xa–yb–xc+yd)(–Sd)

complexity [14].
The operations for every Dragonfly node are described in

Fig. 7. When θ = 0 in equations xa and ya, then sin(0) = 0 and
cos(0) = 1, which provides a simplification in calculation. As a
result, only cosine-related calculations are enough for the first
equation. This means that the first branch of each Dragonfly
node can be calculated by using only addition operations.

() ()(),xb xa yb xc yd Cb ya xb yc xd Sb         (5)

() ()(),yb ya xb yc xd Cb xa yb xc yd Sb          (6)

(),xb P Cb T Sb      (7)

().yb T Cb P Sb      (8)

If we analyze the equations in Fig. 7 over all values of θ,
with the exception of θ = 0, then it is clear (for example, in (5)
and (6)) that twiddle factors are common to both equations;
imaginary and real parts are consecutively used for both
equations (see the P and T parts in (7) and (8)). Using the same
hardware for common parts in the equations in Fig. 7 reduces
the hardware complexity.

2. Serial vs. Parallel and IP Solutions on Market

Serial or parallel methods are chosen depending on the
requirements of the application at hand. Serial approaches are
usually suitable for general-purpose designs. On the other hand,
in high-speed applications, parallel realization becomes
inevitable, since it is the fastest method. However, its logic-area
consumption is in the order of multiples of the serial realization
and requires a longer implementation time. The advantage of a
fully parallel design is shown in Fig. 8.

FFT IP Core solutions available on the market for FPGAs,

Fig. 8. Serial vs. parallel [16].

Serial implementation

×

Data in

Coefficients

256 loops
needed

to process
samples

+

Reg

Data out

MAC unit 500 MHz
256 clock cycles = 2 MSPS

(a)

Parallel implementation
Data in

C0 C1 C2 C3 C4 C5 C6 C7 C254 C255

Data out

+ + + + + + + + + +

× × × × × × × × × ×

156 MHz
1 clock cycle = 156 MSPS

(b)

R
eg

R
eg

R
eg

R
eg

R
eg

R
eg

R
eg

R
eg

R
eg

R
eg

R
eg

R
eg

R
eg

R
eg

R
eg

R
eg

R
eg

R
eg

R

eg

R
eg

R
eg

R
eg

R
eg

R
eg

R
eg

R
eg

R
eg

ETRI Journal, Volume 37, Number 4, August 2015 Gokhan Polat et al. 671
http://dx.doi.org/10.4218/etrij.15.0114.0678

Fig. 9. Serial-processing FFT IP Core (Xilinx) [17].

ROM for
twiddles

Input data Data
RAM 0

Data
RAM 1

Data
RAM 2

Data
RAM 3

S
w

it
ch

Radix-4
Dragonfly

S
w

it
ch

Output data

Fig. 10. Serial-processing FFT IP Core (Commsonic) [18].

Input buffer

Working
buffer

Complex time-
domain data

Radix-4 FFT
engine

Complex frequency-
domain data

provided by IP Core suppliers or IDEs of the popular FPGA
producers, are based on a serial processing technique [17]–[18].
FFT IP Cores, based on serial processing, generally have only
one Radix-4 (or Radix-2) node, and such a node is used over
and over for every twiddle factor to overcome the disadvantage
of logic area consumption; examples of such FFT IP Cores,
available in today’s market, are shown in Figs. 9 and 10.
Although a serial processing approach requires less logic area,
the speed of its data processing performance is far below that
desired for optical data transmissions.

As an example, a serial processing–based 256-point FFT IP
Core needs 256 clock pulses to perform transformation
operations. Two hundred and fifty six samples of I and Q input
data are needed to be applied to the core, one by one in every
clock (see Fig. 4). In this case, 255 extra clock cycles are needed
to process the data, taken in one clock cycle from the optical line.
In our application, 256 samples of I and Q input data are
collected from the optical system in one clock cycle. The data
have to be buffered when serial architecture is preferred, but in
this case, the buffer is overloaded in a short time or else an
unlimited buffer size becomes necessary. Therefore, a fully
parallel architecture is unavoidable for an optical communication
system, which means every branch of such an architecture needs
to be taken into consideration to obtain an optimal solution.

3. Multiplication

Multiplication is an intensively used operation in FFT

computations and one that is performed by FPGAs. In FPGAs,
intensive use of multiplication in FFT computations, itself a
challenging issue, is generally handled by dedicated multipliers
(DSP48 blocks for Xilinx) [19]. These specialized and
dedicated blocks are limited, so they should be used effectively.
Therefore, FFT IP Cores that are based on serial architecture
use a limited number of dedicated multipliers over and over for
different FFT nodes. Dedicated blocks can also be used for
parallel FFT multiplication operations; however, the total
number of multipliers available in the latest state-of-the-art
FPGA is not enough for a 256-point Radix-4 FFT calculation.
In our application, these prominent resources are reserved for
other data processing operations due to their high-frequency
clock rates. Details of FFT equations are carefully investigated
for minimum size usage in FPGA and maximum computation
speed.

There are two multiplication operations for every equation in
Fig. 7. For example, the real part of a twiddle factor is denoted
by Cb and the imaginary part by –Sb, in (5) and (6). If the sizes
of an FFT and Radix are determined, then it means that the
numerical values of the twiddle factors on every node are
constant and known. Hence, the operation is turned into
multiplication by a constant.

One method of fast calculation for multiplication by a
constant involves the use of a memory-based system. In such
an approach, precalculated constant twiddle factors are stored
in a RAM block as a lookup table. Unfortunately, there is
not enough available RAM block capacity to perform
simultaneous access in a fully parallel design. Even state-of-
the-art FPGAs in the market do not have enough RAM block
capacity to access twiddle factors at the same time. Using
common addresses for common values may reduce the size of
a RAM block, but this will then cause memory conflicts.

Another solution for multiplication by a constant is one that
is known as the shift-add method. Fortunately, both the shift
operation and the add operation can easily be handled on
FPGAs. When using this method, only configurable logic
blocks are to be used as opposed to dedicated multipliers. In the
shift-add method, the constant value is converted into a binary
representation. If the digit under operation is “1,” then the
multiplicand is shifted by one bit and the shifted value is added
to the result; otherwise, an addition operation is not performed.
After this shifting process is completed for all bits, the
multiplication operation ends. Details of the operation are
shown in Fig. 11.

The number of logic units to be used for multiplication
depends on the number of 1s in the binary representation of the
constant. First of all, twiddle factors are calculated and then
used as constant values. The number of 1s in the constant
values is determined to figure out the required number of

672 Gokhan Polat et al. ETRI Journal, Volume 37, Number 4, August 2015
http://dx.doi.org/10.4218/etrij.15.0114.0678

Fig. 11. Shift-add method for multiplication.

6
84

504
×

→

→
110 multiplier

1010100 multiplicand

1
2
4
8
16
32
64

0
0
1
0
1
0
1

504 111111000

000
000

110
000

110
000

110 +

Multiplicand
(constant)

x(n) Multiplier
(variable)

84 84x(n)

84x(n)4

16

64

+

+

+

x(n)

Table 1. Different expanded values for first eleven twiddle factors on
unit circle with N = 256 points.

Expand
with 16

Expand
with 64

Expand
with 256

Expand with
1024

n = 0 1,000 + 0,000i 16 + 0i 64 + 0i 256 + 0i 1,024 + 0i

n = 1 0,999 – 0,024i 16 – 0i 64 – 2i 256 – 6i 1,024 – 25i

n = 2 0,998 – 0,049i 16 – 1i 64 – 3i 256 – 13i 1,023 – 50i

n = 3 0,997 – 0,073i 16 – 1i 64 – 5i 255 – 19i 1,021 – 75i

n = 4 0,995 – 0,998i 16 – 2i 64 – 6i 255 – 25i 1,019 – 100i

n = 5 0,992 – 0,122i 16 – 2i 64 – 8i 254 – 31i 1,016 – 125i

n = 6 0,989 – 0,146i 16 – 2i 63 – 9i 253 – 38i 1,013 – 150i

n = 7 0,985 – 0,170i 16 – 3i 63 – 11i 252 – 44i 1,009 – 175i

n = 8 0,980 – 0,195i 16 – 3i 63 – 12i 251 – 50i 1,004 – 200i

n = 9 0,975 – 0,219i 16 – 4i 62 – 14i 250 – 56i 999 – 2,24i

n = 10 0,970 – 0,242i 16 – 4i 62 – 16i 248 – 62i 993 – 2,49i

Table 2. MAE as result of using different expanding factors and
inputs with different numbers of bits.

5 bit 6 bit 7 bit 8 bit # input bits

Expanding
factor

Real Imag Real Imag Real Imag Real Imag

1,024 1.111 1.175 1.142 1.213 1.193 1.202 1.198 1.280

512 1.099 1.179 1.160 1.210 1.183 1.376 1.281 1.405

256 1.164 1.179 1.316 1.325 1.501 1.542 2.140 1.955

128 1.223 1.308 1.734 1.695 2.423 2.365 4.319 4.185

64 1.597 1.678 2.727 2.747 5.066 5.022 9.797 9.064

32 2.635 2.631 5.155 4.325 10.196 8.867 18.51618.131

16 3.446 3.944 7.138 6.804 14.800 14.065 28.26029.093

8 8.387 8.382 16.46116.912 36.352 35.018 63.42864.237

adders. The equation used to calculate twiddle factors is

(j2π)/ .n n N
NW e  In this study, N is 256; therefore, the equation

becomes (j2π) /256
256 ,n nW e  where N represents the number

points that are to be equally spaced on the circumference of a

unit circle. The twiddle factors on the unit circle in Fig. 6 are
fractional numbers.

Performing real-time operations on high-speed channels with
fractional numbers is a challenging task. Using fixed-point
arithmetic instead of floating-point arithmetic helps to reduce
hardware requirements and processing times [20]. If fixed-
point arithmetic is chosen, then twiddle factors will have to be
normalized; however, since any required normalization factor
depends on an individual user’s needs, we can state that the
normalized values of any two neighboring points on a unit
circle must be distinguishable; namely, enough numbers of bits
have to be used in the resulting fixed-point representations. As
an example, let us consider the eleven twiddle factors (0

256W to
10
256W), which are normalized by different expanding factors,

shown in Table 1.
Upon evaluating the values in Table 1, we can see that

expanding the twiddle factors by 10 bits (210 = 1,024) seems
appropriate for reaching distinguishable successive values on a
unit circle.

In this study, inputs taken from an optical line are converted
by five-bit ADC’s, and the selected appropriate normalization
factor is 1,024 (10 bits). These parameters are application
dependent and can be changed by a user when needed. Using
different numbers of bits for normalization will cause different
rounding errors. Preferable mean absolute error (MAE) values
with respect to different normalization factors are shown in
Table 2. The numbers of bits used for expanding twiddle
factors can be increased until a desired MAE value is reached
for an application.

4. Design and Implementation

The architecture of the upper-most level of a Radix-4 256-
point FFT has four stages. Every stage except the last one
consists of two subparts — adder blocks and multiplier blocks.
A substructure of the upper-most level architecture has four
stages, as shown in Fig. 12. Every adder block has 64 sub-
blocks for Dragonfly-node addition operations. A Dragonfly
node has eight input values (four real and four imaginary).
Adder sub-blocks perform addition and subtraction operations
for Dragonfly nodes in (5)–(6), as depicted in Fig. 13.

The inner architecture of the multiplier blocks of stages 1–3
is more complex (see Fig. 14). In such multiplier blocks,
multiplicands are converted to unsigned values while keeping
the sign values in mind to perform a proper multiplication
(performed in an “ABS” block). After multiplications are
completed, the results are converted to signed values to get the
correct xb and yb (in a “Return ABS” block).

A multiplication block has shift/add-based multipliers for
coefficients (here, the real and imaginary parts of the twiddle

ETRI Journal, Volume 37, Number 4, August 2015 Gokhan Polat et al. 673
http://dx.doi.org/10.4218/etrij.15.0114.0678

Fig. 12. Architecture of upper-most level of Radix-4 256-point FFT.

+ + + +
×
×

×
×

×
×

×
×

×
×

×
×

Stage 1 Stage 2 Stage 3 Stage 4

Add Mult
W0n

W1n

W2n

W3n

Add Mult
W0n

W1n

W2n

W3n

Add Mult
W0n

W1n

W2n

W3n

Fig. 13. Adder sub-block structure.

xa

ya

xb

yb

xd

yd

xc

yc

Re0

Im0

Re1

Im1

Re2

Im2

Re3

Im3

Re0

Im0

Re1

Im1

Re2

Im2

Re3

Im3

xa+xb+xc+xd

ya+yb+yc+yd

xa+yb–xc–yd

ya–xb–yc+xd

xa–xb+xc–xd

ya–yb+yc–yd

xa–yb–xc+yd

ya+xb–yc–xd

A
dd

it
io

na
l s

ub
-b

lo
ck

factors). In (7) and (8), the T and P parts are common to both
equations; thus, the same logic block can be used for
computing them consecutively. Similarly, the same shift/add
block is used twice for computing xb and yb so as to reduce
logic area consumption in an FPGA. In this case, data collision
has to be avoided and any introduced time delay has to be kept
in mind for the performance of the whole FFT core.

In the implementation phase of a multiplication block, at the
first clock signal, parts of (7) are calculated and partial results
are copied to output registers. Parts P and T are also copied to
input registers for calculation of (8). At the second clock signal,
the P and T values from the input registers are multiplied by
their respective coefficients, Cb and –Sb, and the results of the
multiplications are summed to form yb at the output.
Simultaneously, the partial values from the output registers are
subtracted to form xb. As a result, xb and yb are
synchronously obtained at the output.

A block diagram of the aforementioned multiplication block
is depicted in Fig. 14. The multiplication block in Fig. 14 is
used in stages 1, 2, and 3 in Fig. 12 and is run at double clock
speed to catch up on the speed of the remaining blocks in the
FFT core. When a twiddle factor has an angle of θ = 0, there is
no need for multiplication. Then, the values multiplied by “1”
are held in a register to synchronize with other blocks, which
reduces logical area consumption in FPGAs.

Fig. 14. Multiplication block structure.

xa+yb–xc–yd

ya–xb–yc+xd

ABS

ABS

R

R

Cb

–Sb

R

R

Return
ABS

Return
ABS

Return
ABS

Return
ABS

–

+

xb

yb

Table 3. FFT synthesis results.

Device utilization summary (estimated values) (∙)

Logic utilization Used Available Utilization

Number of slice registers 123,406 708,480 17%

Number of slice LUTs 213,700 354,240 60%

Number of fully used LUT∙FF pairs 82,598 254,508 32%

Timing summary:

Speed grade: –2

Minimum period: 2.977 ns (maximum frequency: 335.914 MHz)

Minimum input arrival time before clock: 7.304 ns

Minimum output required time after clock: 0.659 ns

Minimum combinational path delay: no path found

IV. Synthesis and Simulation Results

In this section, the logic resources used in an FPGA for the
implementation of an FFT core, and simulation and test results
for the proposed high-speed FFT core are presented. In our
implementation, VHDL language is preferred as HDL. This
high-speed FFT core is especially designed for optical data
transmission; therefore, a fully parallel architecture is used. The
Virtex-6 565T is preferred as an FPGA chip, since huge
numbers of logic units are necessary. In this study, FFT
computation results are obtained only with nine-clock latency.
The synthesis results are shown in Table 3.

In our test scenario, I and Q input data (each has 256
samples) are copied into our FFT processor in one clock. The
input data and results are shown in Figs. 15, 16, and 17 partially,
because it is not possible to display all 512 (256 I + 256 Q)
values on one page. Our simulation results are verified using
MATLAB. During simulations, the first FFT’s of the test
vectors are calculated using MATLAB. Then, the same test
vectors are copied into an FPGA test bench. After a simulation
ends, the FFT results of the test vectors are observed in Questa
(as in Fig. 15).

The test bench results obtained from the Questa environment
are compared the to MATLAB results, as shown in Fig. 16.

674 Gokhan Polat et al. ETRI Journal, Volume 37, Number 4, August 2015
http://dx.doi.org/10.4218/etrij.15.0114.0678

Fig. 15. Questa test bench results.

Fig. 16. Simulation comparison of Questa results.

Fig. 17. Results comparison of FFT by MATLAB to FFT by FPGA.

2,000

1,500

1,000

500

0

0 50 100 150 200 250

FFT MATLAB

FFT FPGA
2,000

1,500

1,000

500

0

0 50 100 150 200 250

6

4

2

0

–2

–4
0 50 100 150 200 250

Error

(a)

(c)

(b)

Fig. 18. Chip Scope logic analyzer results.

The results have immaterially small errors because of the
rounding effect on the twiddle factors, which are represented
by 10 bits. The different test vectors are applied to the test
bench, and tests are repeated for validation purposes.
Simulation results are captured and compared to MATLAB
results; the resulting rounding errors are shown in Fig. 17.
Simulation results without errors do not necessarily indicate
that an FFT core will definitely run on an FPGA. An FFT core
implementation is needed to be uploaded into FPGA. An FFT
core implementation is validated once it has been run on a real
FPGA environment.

The same test vectors simulating the optical data are also
loaded into RAM blocks in the FPGA and applied to the
proposed FFT core as the input variables to validate that our
implementation runs on a real hardware platform. The outputs

ETRI Journal, Volume 37, Number 4, August 2015 Gokhan Polat et al. 675
http://dx.doi.org/10.4218/etrij.15.0114.0678

of the FFT core are investigated via Chip Scope (a virtual logic
analyzer). It is observed that the implemented FFT core results
are exactly the same with Questa, as shown in Fig. 18.

V. Conclusion

In this study, an optimized Radix-4 fully parallel FFT
processor on a Virtex-6 565T FPGA platform is designed and
implemented. The 256-point Radix-4 FFT has a maximum
clock frequency of 312 MHz. The utilization summary
includes 123,406 slices and 213,700 LUTs on the Virtex-6
565T FPGA platform. In this work, different rounding schemes
are analyzed and compared. In our application, 5-bit inputs and
an expanding factor of 1,024 are used; the MAE of the FFT
result is about 1.1. Moreover, to address different user needs,
different numbers of bits and expanding factors were provided
in Table 2. At first glance, the logic area consumption is
excessive when compared to pipelined architectures on the
market such as [12], [16], [17], and [18]. On the other hand, in
the case of optical communication, a fully parallel architecture
is inevitable to reach excessive speeds at the cost of higher
logic area consumption.

References

[1] S. Haykin, “Signal Processing: Where Physics and Mathematics

Meet,” IEEE Signal Process. Mag., vol. 18, no. 4, July 2001, pp.

6–7.

[2] B. Zhou, Y. Peng, and D. Hwang, “Pipeline FFT Architectures

Optimized for FPGAs,” Int. J. Reconfigurable Comput., vol.

2009, Jan. 2009, pp. 1–9.

[3] J.M. Palmer, “The Hybrid Architecture Parallel Fast Fourier

Transform (HAPFFT),” M.S. thesis, Brigham Young University,

Provo, UT, USA, 2005.

[4] H. Kaptan, A. Tangel, S. Sahin, “FPGA Implementation of FFT

Algorithms Using Floating Point Numbers,” Int. Conf. Electr.

Electron. Eng., Bursa, Turkey, Dec. 2007, pp. 114–117.

[5] J. Gajewski and M. Przywecki, Deliverable D.4.4: Events

Proceedings, Porta Optica Study, June 26, 2007, p. 61. Accessed

June 15, 2013. http://www.porta-optica.org/publications/POS-

D4.4_Events_proceedings.pdf

[6] K. Ishihara, “Frequency-Domain Equalization for High-Speed

Fiber-Optic Transmission Systems,” Wireless Signal Process.

Netw. Workshop, NTT Network Innovation Laboratories NTT

Corporation, Tohoku University, Japan, 2010.

[7] Chromatic Dispersion (Optics), Knowledgebase at FiberOptic.

com, 2012. Accessed June 15, 2013. http://www.fiberoptic.

com/fiber_characterization/pdf/chromatic_dispersion.pdf

[8] M. Mussolin, “Digital Signal Processing Algorithms for High-

Speed Coherent Transmission in Optical Fibers,” M.S. thesis,

Università deglistudi di Padova Facoltà di Ingegneria, Padova,

Italy, 2010.

[9] G. Chauvel, Dispersion in Optical Fibers, Anritsu Corporation,

2012. Accessed June 15, 2013. http://www.ausoptic.com/Alltopic/

Download/Disp_in_Opt_Fibers_PMD_CD.pdf.http://www.meric

ipristroje.eu/download/files/White-Paper_Dispersion-in-Optical-

Fibers_PMD_CD_Ltr.pdf

[10] F. Dinechin, H. Takeugming, and J.-M. Tanguy, “A 128-Tap

Complex FIR Filter Processing 20 Giga-Samples/s in a Single

FPGA,” Asilomar Conf. Signals, Syst. Comput., Pacific Groove,

CA, USA, Nov. 7–10, 2010, pp. 841–844.

[11] A.V. Oppenheim and R.W. Shafer, “Discrete-Time Signal

Processing,” 2nd ed., NJ, USA: Prentice Hall, 1998, p. 657.

[12] V.F.J. Alberto, R.T.R. Jesus, and O.M. Alejandro, “VHDL Core

for 1024-Point Radix-4 FFT Computation,” Int. Conf.

Reconfigurable Comput. FPGA’s, Puebla City, Mexico, Sept. 28–

30, 2005, pp. 4–24.

[13] B. Baas, Handout FFT2.pdf, UC Davis, 2012. Accessed June 15,

2013. http://web.ece.ucdavis.edu/~bbaas/281/slides/Handout-.fft2.

pdf

[14] A. Bonilla et al., “Design and Implementation of Fast Fourier

Transform Algorithm in FPGA,” Simpósio Brasileiro de

Telecomunicações, Brasilia, Brazil, Sept. 13–16, 2012.

[15] C. Wu, “Implementing the Radix-4 Decimation in Frequency

(DIF) Fast Fourier Transform (FFT) Algorithm Using a

TMS320C80 D0 DSP,” Texas Instruments, Taiwan, Application

Report: SPRA152, 1998.

[16] S. Gallagher, Mapping DSP Algorithms into FPGAs, Xilinx Inc.,

2012. Accessed June 15, 2013. http://www.ieee.li/pdf

/viewgraphs/mapping_dsp_algorithms_into_ fpgas.pdf

[17] Xilinx, DS260 LogiCORE IP Fast Fourier Transform v7.1,

Xilinx Inc., 2012. Accessed June 15, 2013. http://www.xilinx.

com/support/documentation/ip_documentation/xfft_ds260.pdf

[18] Commsonic, General-Purpose FFT Core, CMS0001. Accessed

June 15, 2013. http://www.commsonic.com/downloads/sd0001.

pdf

[19] Xilinx, DS260 LogiCORE IP DSP48 Macro v2.0. Accessed June

15, 2013. http://www.xilinx.com/support/documentation/sw_manuals/

xilinx13_3/sysgen_ref.pdf, 2012

[20] A. Ferizi et al., “Design and Implementation of a Fixed-Point

Radix-4 FFT Optimized for Local Positioning in Wireless Sensor

Networks,” Int. Multi-conf. Syst., Signals Devices, Chemnitz,

Germany, Mar. 20–23, 2012, pp. 1–4.

676 Gokhan Polat et al. ETRI Journal, Volume 37, Number 4, August 2015
http://dx.doi.org/10.4218/etrij.15.0114.0678

Gokhan Polat received his BS and MS degrees

in electronics and communication engineering

from the University of Kocaeli, Turkey, in 2010

and 2014, respectively. His research interests

include embedded systems and signal

processing.

Sitki Ozturk received his BS, MS, and PhD

degrees in electronics and communication

engineering from the University of Yildiz,

Istanbul, Turkey, in 1982, 1987, and 1995,

respectively. He is currently working as an

assistant professor with the Department of

Electronics and Telecommunication, University

of Kocaeli, Turkey. His research interests include switching networks,

industrial networks, and communication.

Mehmet Yakut received his BS and MS

degrees in electronics and communication

engineering from the University of Yildiz,

Istanbul, Turkey, in 1987 and 1991, respectively,

and his PhD degree in electronics and

communication engineering from the University

of Kocaeli, Turkey, in 2002. He is currently

working as an assistant professor with the Department of Electronics and

Telecommunication, University of Kocaeli. His research interests include

wireless sensor networks, embedded systems, and image processing.

