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The third-party FFT IP cores available in today’s 
markets do not provide the desired speed demands for 
optical communication. This study deals with the design 
and implementation of a 256-point Radix-4 100 Gbit/s  
FFT, where computational steps are reconsidered and 
optimized for high-speed applications, such as radar and 
fiber optics. Alternative methods for FFT implementation 
are investigated and Radix-4 is decided to be the optimal 
solution for our fully parallel FPGA application. The 
algorithms that we will implement during the 
development phase are to be tested on a Xilinx Virtex-6 
FPGA platform. The proposed FFT core has a fully 
parallel architecture with a latency of nine clocks, and the 
target clock rate is 312.5 MHz. 
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I. Introduction 

Increasing demands for long-distance and high-speed data 
communication bring about wide bandwidth and low 
attenuation necessities. So, copper wires are gradually replaced 
with optical wires due to their wide bandwidth and lower 
attenuation ability. However, signal transmission via light 
introduces some disadvantages, such as chromatic dispersion 
(CD) and polarization mode dispersion (PMD). Signal 
processing is at its best when it successfully combines the 
unique ability of mathematics to generalize with both the 
insight and prior information gained from the underlying 
physics of the problem at hand [1]. The CD effect on a fiber 
optic transmission line can be modeled and distortion effects 
can be compensated using digital signal processing (DSP) 
techniques instead of a fiber Bragg grating–based dispersion 
compensator. 

Although there are time-domain solutions for CD 
compensation, frequency domain–based compensation is 
commonly preferred in DSP applications. A Fourier 
transformation is widely used to transfer an examined signal 
into the frequency domain. A fast Fourier transform (FFT), as 
an efficient algorithm to calculate a discrete Fourier transform 
(DFT), is one of the most significant operations in modern DSP 
systems [2]. An FFT strongly minimizes the cost of 
implementing a DFT on digital computing systems [3]. 

There is no way to buffer optical digital signals for a long 
time because data is continuously fed through an optical 
transmission line. So, a real-time solution is inevitable for CD 
compensation. Input values should be processed as fast as 
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possible to obtain outputs in real time [4]. To maintain a high-
speed data flow, a solution has to be based on a parallel 
architecture. Field-programmable gate arrays (FPGAs) are 
very attractive platforms for high-speed signal processing due 
to their parallel processing abilities, such as those used in our 
FFT-based CD compensation.  

The rest of this paper is organized as follows. Section II 
addresses CD compensation. Section III gives background 
information about FFT and related hardware solutions.  
Section IV presents the synthesis results. Finally, Section V 
summarizes the paper. 

II. CD Compensation in Optical Communication 

Fiber-optic lines are an ideal transmission environment   
for high-speed data communication; however, such an 
environment has its own disadvantages, such as CD and PMD. 
This work is focused on CD compensation. 

Different wavelengths of light have different velocities, 
known as CD. In optical lines, every pulse that is sent by a 
transmitter reaches a given destination having a different time 
delay to the next. CD, or the aforementioned time delay 
between different colors, is defined as the group delay between 
different wavelengths of light, as shown in Fig. 1 [5]. 

The transfer function of a fiber with CD can be written as in 
(1) below [6]. The expression for group velocity is given in (2) 
[7]. The group-velocity dispersion parameter, D, is defined as 
the time delay between two different spectral components 
separated by a certain wavelength interval. The parameters 
given in (1) are as follows: c is the speed of light, L is the 
transmission line length, D is the CD factor, λ is the wavelength 
of color, β is the propagation constant, and vg is the group 
velocity. 
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The CD effect can be corrected in either the electrical or 
optical domain. One adopted method for solving the problem 
of compensation involves the usage of dispersion 
compensating fiber (DCF), which can cause additional loss on 
a signal; thus, a system needs additional optical amplifiers that 
can increase the noise and cost of the system [8]. Therefore, a 
compensation method that utilizes the electrical domain with 
DSP is commonly preferred. Compensating with a DCF 
module on a fiber-optic line is shown in Fig. 2. 

Electrical compensation methods can be performed both in 
time and frequency domains. Savory’s method, adaptive filters,  

 

Fig. 1. Chromatic dispersion. 
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Fig. 2. Compensating with DCF. 
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Fig. 3. FFT method for CD compensation. 
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and the constant modulus algorithm are examples of such 
methods performed in the time domain. The FFT method and 
its derivatives can be considered as examples of such methods 
performed in the frequency domain [8]. The CD effect causes a 
time-domain delay in different color groups. This effect brings 
phase distortion to the frequency domain. Fortunately, the CD 
effect is linear, which means it is stable, predictable, and 
controllable [9]. Both the multiplication of the frequency 
responses of the signals and the inverse of the CD channel 
transfer function compensate the CD effect. Finally, corrected 
signals should be transferred to the time domain using an IFFT 
algorithm, as shown in Fig. 3. 

In this study, the CD effect is compensated by means of DSP 
algorithms running on FPGA. However, the acquisition of 
optical signals into an FPGA should be considered precisely.  
In this paper, a possible solution is designed for the         
40 GSamples/s scenario. The details for this scenario are 
depicted in Fig. 4. 40 GSamples/s optical data is carried by two 
polarizations. A 40 GSamples/s signal is split by a polarization 
splitter into two 20 GSamples/s signals. Each 20 GSamples/s 
polarization carries its own I and Q components of the optical 
signals (see Fig. 4). Data from an optical channel is passed to 
an FPGA via four high-speed time-interleaved 5-bit ADCs  
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Fig. 4. Applying 40 GSample/s signal to FPGA. 
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sampled at 50 ps time shifts. The data obtained from the ADCs 
is transferred into the FPGA serially, bit by bit, using high-
speed transmission channels (one GTX for each data bit). 
FPGAs can obtain high-speed serial data with high-speed 
transmission channels known as GTXs [10]. 20 GTX channels 
are used for each I and Q component per polarization. Sampled 
bits from time-interleaved ADC’s are shown in Fig. 4. As can 
be seen from the bit numbers of the same column, there is one 
clock time shift between successive rows. This indicates that it 
is necessary to suitably order the data that is to be applied to the 
FFT core. Higher data communication speeds are possible by 
using faster ADCs and high-speed transmission channels such 
as GTHs and GTZs. 

III. Fourier Transformation and Efficient FFT 
Implementation 

1. FFT and Radix 

A DFT of a signal provides a representation of the signal   
in the frequency domain. An FFT is a fast algorithm for 
calculating a DFT. An FFT provides a speed advantage by 
using the symmetrical and periodical values of a phase factor 
(twiddle factor) to calculate a DFT [4]. Equations for an N-
point DFT are given in (3) and (4) below [11], where n 
represents the discrete time-domain index and k is the 
normalized frequency-domain index. 
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Fig. 5. Comparing number of stages in 16-point Radix-2 and 16-
point Radix-4 FFTs [13]. 
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Different FFT algorithms provide different benefits, but there 
is always a trade-off between computation speed and used 
FPGA area. Reducing an FFT’s computation time reduces 
hardware complexity [12]. Different decomposition methods 
are available, such as Radix-2 (Radix-2 nodes are known as 
Butterfly nodes) and Radix-4 (Radix-4 nodes are known as 
Dragonfly nodes). The different stages of an N-point FFT can 
be calculated in log 4(N) operations for Radix-4 and in log 2(N) 
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operations for Radix-2, as shown in Fig. 5. 
If the computational cost of multiplication is taken into 

consideration, then Radix-2 brings additional integer twiddle 
factors at angles of 0° and 180°, and Radix-4 brings additional 
integer twiddle factors at angles of 0°, 90°, 180°, and 270°. 
Sine and cosine equivalents of the aforementioned angles 
within a unit circle are simple integers and do not place any 
additional burden on the multiplication load, as shown in Fig. 6. 
Although a high Radix number reduces the number of 
computation stages, Radix-8 is not preferred, because it brings 
fractional twiddle factors ( 2 ) in a unit circle at angles of 45°,  
135°, 225°, and 315° [13]. If Radix-4 is compared to the 
Radix-2 algorithm, then Radix-4 has a higher complexity and 
less computational cost. A decimation-in-frequency (DIF) 
Radix-4 FFT approach is used in our implementation, as it is an 
approach that is frequently preferred to reduce computational 

 

 

Fig. 6. Twiddle factors for Radix-2, Radix-4, and Radix-8. 
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Fig. 7. Radix-4 DIF FFT Dragonfly [15]. 
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complexity [14]. 
The operations for every Dragonfly node are described in 

Fig. 7. When θ = 0 in equations xa and ya, then sin(0) = 0 and 
cos(0) = 1, which provides a simplification in calculation. As a 
result, only cosine-related calculations are enough for the first 
equation. This means that the first branch of each Dragonfly 
node can be calculated by using only addition operations.  

( ) ( )( ),xb xa yb xc yd Cb ya xb yc xd Sb           (5) 

( ) ( )( ),yb ya xb yc xd Cb xa yb xc yd Sb           (6) 

( ),xb P Cb T Sb                  (7) 

( ).yb T Cb P Sb                  (8) 

If we analyze the equations in Fig. 7 over all values of θ, 
with the exception of θ = 0, then it is clear (for example, in (5) 
and (6)) that twiddle factors are common to both equations; 
imaginary and real parts are consecutively used for both 
equations (see the P and T parts in (7) and (8)). Using the same 
hardware for common parts in the equations in Fig. 7 reduces 
the hardware complexity. 

2. Serial vs. Parallel and IP Solutions on Market 

Serial or parallel methods are chosen depending on the 
requirements of the application at hand. Serial approaches are 
usually suitable for general-purpose designs. On the other hand, 
in high-speed applications, parallel realization becomes 
inevitable, since it is the fastest method. However, its logic-area 
consumption is in the order of multiples of the serial realization 
and requires a longer implementation time. The advantage of a 
fully parallel design is shown in Fig. 8. 

FFT IP Core solutions available on the market for FPGAs, 

 

Fig. 8. Serial vs. parallel [16]. 
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Fig. 9. Serial-processing FFT IP Core (Xilinx) [17]. 
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Fig. 10. Serial-processing FFT IP Core (Commsonic) [18]. 
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provided by IP Core suppliers or IDEs of the popular FPGA 
producers, are based on a serial processing technique [17]–[18]. 
FFT IP Cores, based on serial processing, generally have only 
one Radix-4 (or Radix-2) node, and such a node is used over 
and over for every twiddle factor to overcome the disadvantage 
of logic area consumption; examples of such FFT IP Cores, 
available in today’s market, are shown in Figs. 9 and 10. 
Although a serial processing approach requires less logic area, 
the speed of its data processing performance is far below that  
desired for optical data transmissions. 

As an example, a serial processing–based 256-point FFT IP 
Core needs 256 clock pulses to perform transformation 
operations. Two hundred and fifty six samples of I and Q input 
data are needed to be applied to the core, one by one in every 
clock (see Fig. 4). In this case, 255 extra clock cycles are needed 
to process the data, taken in one clock cycle from the optical line. 
In our application, 256 samples of I and Q input data are 
collected from the optical system in one clock cycle. The data 
have to be buffered when serial architecture is preferred, but in 
this case, the buffer is overloaded in a short time or else an 
unlimited buffer size becomes necessary. Therefore, a fully 
parallel architecture is unavoidable for an optical communication 
system, which means every branch of such an architecture needs 
to be taken into consideration to obtain an optimal solution. 

3. Multiplication 

Multiplication is an intensively used operation in FFT 

computations and one that is performed by FPGAs. In FPGAs, 
intensive use of multiplication in FFT computations, itself a 
challenging issue, is generally handled by dedicated multipliers 
(DSP48 blocks for Xilinx) [19]. These specialized and 
dedicated blocks are limited, so they should be used effectively. 
Therefore, FFT IP Cores that are based on serial architecture 
use a limited number of dedicated multipliers over and over for 
different FFT nodes. Dedicated blocks can also be used for 
parallel FFT multiplication operations; however, the total 
number of multipliers available in the latest state-of-the-art 
FPGA is not enough for a 256-point Radix-4 FFT calculation. 
In our application, these prominent resources are reserved for 
other data processing operations due to their high-frequency 
clock rates. Details of FFT equations are carefully investigated 
for minimum size usage in FPGA and maximum computation 
speed.  

There are two multiplication operations for every equation in 
Fig. 7. For example, the real part of a twiddle factor is denoted 
by Cb and the imaginary part by –Sb, in (5) and (6). If the sizes 
of an FFT and Radix are determined, then it means that the 
numerical values of the twiddle factors on every node are 
constant and known. Hence, the operation is turned into 
multiplication by a constant.  

One method of fast calculation for multiplication by a 
constant involves the use of a memory-based system. In such 
an approach, precalculated constant twiddle factors are stored 
in a RAM block as a lookup table. Unfortunately, there is   
not enough available RAM block capacity to perform 
simultaneous access in a fully parallel design. Even state-of-
the-art FPGAs in the market do not have enough RAM block 
capacity to access twiddle factors at the same time. Using 
common addresses for common values may reduce the size of 
a RAM block, but this will then cause memory conflicts. 

Another solution for multiplication by a constant is one that 
is known as the shift-add method. Fortunately, both the shift 
operation and the add operation can easily be handled on 
FPGAs. When using this method, only configurable logic 
blocks are to be used as opposed to dedicated multipliers. In the 
shift-add method, the constant value is converted into a binary 
representation. If the digit under operation is “1,” then the 
multiplicand is shifted by one bit and the shifted value is added 
to the result; otherwise, an addition operation is not performed. 
After this shifting process is completed for all bits, the 
multiplication operation ends. Details of the operation are 
shown in Fig. 11. 

The number of logic units to be used for multiplication 
depends on the number of 1s in the binary representation of the 
constant. First of all, twiddle factors are calculated and then 
used as constant values. The number of 1s in the constant 
values is determined to figure out the required number of  
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Fig. 11. Shift-add method for multiplication. 
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Table 1. Different expanded values for first eleven twiddle factors on 
unit circle with N = 256 points. 

 
Expand 
with 16 

Expand 
with 64 

Expand 
with 256 

Expand with 
1024 

n = 0 1,000 + 0,000i 16 + 0i 64 + 0i 256 + 0i 1,024 + 0i

n = 1 0,999 – 0,024i 16 – 0i 64 – 2i 256 – 6i 1,024 – 25i

n = 2 0,998 – 0,049i 16 – 1i 64 – 3i 256 – 13i 1,023 – 50i

n = 3 0,997 – 0,073i 16 – 1i 64 – 5i 255 – 19i 1,021 – 75i

n = 4 0,995 – 0,998i 16 – 2i 64 – 6i 255 – 25i 1,019 – 100i

n = 5 0,992 – 0,122i 16 – 2i 64 – 8i 254 – 31i 1,016 – 125i

n = 6 0,989 – 0,146i 16 – 2i 63 – 9i 253 – 38i 1,013 – 150i

n = 7 0,985 – 0,170i 16 – 3i 63 – 11i 252 – 44i 1,009 – 175i

n = 8 0,980 – 0,195i 16 – 3i 63 – 12i 251 – 50i 1,004 – 200i

n = 9 0,975 – 0,219i 16 – 4i 62 – 14i 250 – 56i 999 – 2,24i

n = 10 0,970 – 0,242i 16 – 4i 62 – 16i 248 – 62i 993 – 2,49i

 

Table 2. MAE as result of using different expanding factors and 
inputs with different numbers of bits. 

5 bit 6 bit 7 bit 8 bit # input bits 
 

Expanding 
factor 

Real Imag Real Imag Real Imag Real Imag

1,024 1.111 1.175 1.142 1.213 1.193 1.202 1.198 1.280

512 1.099 1.179 1.160 1.210 1.183 1.376 1.281 1.405

256 1.164 1.179 1.316 1.325 1.501 1.542 2.140 1.955

128 1.223 1.308 1.734 1.695 2.423 2.365 4.319 4.185

64 1.597 1.678 2.727 2.747 5.066 5.022 9.797 9.064

32 2.635 2.631 5.155 4.325 10.196 8.867 18.51618.131

16 3.446 3.944 7.138 6.804 14.800 14.065 28.26029.093

8 8.387 8.382 16.46116.912 36.352 35.018 63.42864.237

 

 
adders. The equation used to calculate twiddle factors is 

( j2π )/ .n n N
NW e   In this study, N is 256; therefore, the equation 

becomes ( j2π ) /256
256 ,n nW e   where N represents the number 

points that are to be equally spaced on the circumference of a 

unit circle. The twiddle factors on the unit circle in Fig. 6 are 
fractional numbers.  

Performing real-time operations on high-speed channels with 
fractional numbers is a challenging task. Using fixed-point 
arithmetic instead of floating-point arithmetic helps to reduce  
hardware requirements and processing times [20]. If fixed-
point arithmetic is chosen, then twiddle factors will have to be 
normalized; however, since any required normalization factor 
depends on an individual user’s needs, we can state that the 
normalized values of any two neighboring points on a unit 
circle must be distinguishable; namely, enough numbers of bits 
have to be used in the resulting fixed-point representations. As 
an example, let us consider the eleven twiddle factors ( 0

256W  to 
10
256W ), which are normalized by different expanding factors, 

shown in Table 1. 
Upon evaluating the values in Table 1, we can see that 

expanding the twiddle factors by 10 bits (210 = 1,024) seems 
appropriate for reaching distinguishable successive values on a 
unit circle.  

In this study, inputs taken from an optical line are converted 
by five-bit ADC’s, and the selected appropriate normalization 
factor is 1,024 (10 bits). These parameters are application 
dependent and can be changed by a user when needed. Using 
different numbers of bits for normalization will cause different 
rounding errors. Preferable mean absolute error (MAE) values 
with respect to different normalization factors are shown in 
Table 2. The numbers of bits used for expanding twiddle 
factors can be increased until a desired MAE value is reached 
for an application. 

4. Design and Implementation 

The architecture of the upper-most level of a Radix-4 256-
point FFT has four stages. Every stage except the last one 
consists of two subparts — adder blocks and multiplier blocks. 
A substructure of the upper-most level architecture has four 
stages, as shown in Fig. 12. Every adder block has 64 sub-
blocks for Dragonfly-node addition operations. A Dragonfly 
node has eight input values (four real and four imaginary). 
Adder sub-blocks perform addition and subtraction operations 
for Dragonfly nodes in (5)–(6), as depicted in Fig. 13. 

The inner architecture of the multiplier blocks of stages 1–3 
is more complex (see Fig. 14). In such multiplier blocks, 
multiplicands are converted to unsigned values while keeping 
the sign values in mind to perform a proper multiplication 
(performed in an “ABS” block). After multiplications are 
completed, the results are converted to signed values to get the 
correct xb and yb (in a “Return ABS” block). 

A multiplication block has shift/add-based multipliers for 
coefficients (here, the real and imaginary parts of the twiddle  
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Fig. 12. Architecture of upper-most level of Radix-4 256-point FFT.
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Fig. 13. Adder sub-block structure. 

xa 

ya 

xb 

yb 

xd 

yd 

xc 

yc 

Re0 

Im0 

Re1 

Im1 

Re2 

Im2 

Re3 

Im3 

Re0 

Im0 

Re1 

Im1 

Re2 

Im2 

Re3 

Im3 

xa+xb+xc+xd 

ya+yb+yc+yd 

xa+yb–xc–yd 

ya–xb–yc+xd 

xa–xb+xc–xd 

ya–yb+yc–yd 

xa–yb–xc+yd 

ya+xb–yc–xd 

A
dd

it
io

na
l s

ub
-b

lo
ck

 

 
 
factors). In (7) and (8), the T and P parts are common to both 
equations; thus, the same logic block can be used for 
computing them consecutively. Similarly, the same shift/add 
block is used twice for computing xb and yb so as to reduce 
logic area consumption in an FPGA. In this case, data collision 
has to be avoided and any introduced time delay has to be kept 
in mind for the performance of the whole FFT core. 

In the implementation phase of a multiplication block, at the 
first clock signal, parts of (7) are calculated and partial results 
are copied to output registers. Parts P and T are also copied to 
input registers for calculation of (8). At the second clock signal, 
the P and T values from the input registers are multiplied by 
their respective coefficients, Cb and –Sb, and the results of the 
multiplications are summed to form yb at the output. 
Simultaneously, the partial values from the output registers are 
subtracted to form xb. As a result, xb and yb are 
synchronously obtained at the output.  

A block diagram of the aforementioned multiplication block 
is depicted in Fig. 14. The multiplication block in Fig. 14 is 
used in stages 1, 2, and 3 in Fig. 12 and is run at double clock 
speed to catch up on the speed of the remaining blocks in the 
FFT core. When a twiddle factor has an angle of θ = 0, there is 
no need for multiplication. Then, the values multiplied by “1” 
are held in a register to synchronize with other blocks, which 
reduces logical area consumption in FPGAs. 

 

Fig. 14. Multiplication block structure. 
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Table 3. FFT synthesis results. 

Device utilization summary (estimated values) (∙) 

Logic utilization Used  Available Utilization

Number of slice registers 123,406 708,480 17% 

Number of slice LUTs 213,700 354,240 60% 

Number of fully used LUT∙FF pairs 82,598 254,508 32% 

Timing summary: 

---------------------- 

Speed grade: –2 

Minimum period: 2.977 ns (maximum frequency: 335.914 MHz) 

Minimum input arrival time before clock: 7.304 ns 

Minimum output required time after clock: 0.659 ns 

Minimum combinational path delay: no path found 

 

 
IV. Synthesis and Simulation Results 

In this section, the logic resources used in an FPGA for the 
implementation of an FFT core, and simulation and test results 
for the proposed high-speed FFT core are presented. In our 
implementation, VHDL language is preferred as HDL. This 
high-speed FFT core is especially designed for optical data 
transmission; therefore, a fully parallel architecture is used. The  
Virtex-6 565T is preferred as an FPGA chip, since huge 
numbers of logic units are necessary. In this study, FFT 
computation results are obtained only with nine-clock latency. 
The synthesis results are shown in Table 3. 

In our test scenario, I and Q input data (each has 256 
samples) are copied into our FFT processor in one clock. The 
input data and results are shown in Figs. 15, 16, and 17 partially, 
because it is not possible to display all 512 (256 I + 256 Q) 
values on one page. Our simulation results are verified using 
MATLAB. During simulations, the first FFT’s of the test 
vectors are calculated using MATLAB. Then, the same test 
vectors are copied into an FPGA test bench. After a simulation 
ends, the FFT results of the test vectors are observed in Questa 
(as in  Fig. 15). 

The test bench results obtained from the Questa environment 
are compared the to MATLAB results, as shown in Fig. 16.  
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Fig. 15. Questa test bench results.  
 

 

Fig. 16. Simulation comparison of Questa results.  

 

Fig. 17. Results comparison of FFT by MATLAB to FFT by FPGA.
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Fig. 18. Chip Scope logic analyzer results.  
 
The results have immaterially small errors because of the 
rounding effect on the twiddle factors, which are represented 
by 10 bits. The different test vectors are applied to the test 
bench, and tests are repeated for validation purposes. 
Simulation results are captured and compared to MATLAB 
results; the resulting rounding errors are shown in Fig. 17. 
Simulation results without errors do not necessarily indicate 
that an FFT core will definitely run on an FPGA. An FFT core 
implementation is needed to be uploaded into FPGA. An FFT 
core implementation is validated once it has been run on a real 
FPGA environment. 

The same test vectors simulating the optical data are also 
loaded into RAM blocks in the FPGA and applied to the 
proposed FFT core as the input variables to validate that our 
implementation runs on a real hardware platform. The outputs 
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of the FFT core are investigated via Chip Scope (a virtual logic 
analyzer). It is observed that the implemented FFT core results 
are exactly the same with Questa, as shown in Fig. 18. 

V. Conclusion  

In this study, an optimized Radix-4 fully parallel FFT 
processor on a Virtex-6 565T FPGA platform is designed and 
implemented. The 256-point Radix-4 FFT has a maximum 
clock frequency of 312 MHz. The utilization summary 
includes 123,406 slices and 213,700 LUTs on the Virtex-6 
565T FPGA platform. In this work, different rounding schemes 
are analyzed and compared. In our application, 5-bit inputs and 
an expanding factor of 1,024 are used; the MAE of the FFT 
result is about 1.1. Moreover, to address different user needs, 
different numbers of bits and expanding factors were provided 
in Table 2.  At first glance, the logic area consumption is 
excessive when compared to pipelined architectures on the 
market such as [12], [16], [17], and [18]. On the other hand, in 
the case of optical communication, a fully parallel architecture 
is inevitable to reach excessive speeds at the cost of higher 
logic area consumption. 
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